• Title/Summary/Keyword: Noise Equivalent Counting Rate (NECR)

Search Result 2, Processing Time 0.022 seconds

Evaluation of the Image Quality According to the Pre-set Method in PET/CT Image (PET/CT 영상 획득 시 사전설정법 차이에 따른 영상 질 평가)

  • Park, Sun-Myung;Lee, Hyuk;Hong, Gun-Chul;Chung, Eun-Kyung;Choi, Choon-Ki;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.2
    • /
    • pp.41-46
    • /
    • 2011
  • Purpose: The result of exam using an imaging device is very closely related with the image quality. Moreover, this image quality can be changed according to the condition of image acquisition and evaluation method. In this study, we evaluated the image quality according to the difference of pre-set method in PET/CT image. Materials & Methods: PET/CT Discovery STe16 (GE Healthcare, Milwaukee, USA), Chest PET phantom (Experiment 1) and 94 NEMA phantom (Experiment 2) were used. Phantom were filled with $^{18}F$-FDG maintaining hot sphere and background ratio to 4:1. In the case of experiment 1, we set the radio activity concentration on 3.5, 6.0, 8.6 kBq/mL. In the case of experiment 2, we set the radio activity concentration on 3.3, 5.5, 7.7, 9.9, 12.1, 16.5 kBq/mL. All experiments were performed with the time-set method for 2 minutes 30 seconds per frame and the count-set method with one hundred million counts in 3D mode after CT transmission scan. For the evaluation of the image quality, we compared each results by using the NECR and SNR. Results: In the experiment 1, both the NECR and SNR were increased as radioactivity concentration getting increased. The NECR was shown as 53.7, 66.9, 91.4. and SNR was shown as 7.9, 10.0, 11.7. Both the NECR and SNR were increased in time-set method. But the count-set method's pattern was not similar with the time-set method. The NECR was shown as 53.8, 69.1, 97.8, and SNR was shown as 14.1, 14.7 14.4. The SNR was not increased in count-set method. In experiment 2, results of both the NECR and SNR were shown as 45.1, 70.6, 95.3, 115.6, 134.6, 162.2 and 7.1, 8.8, 10.6, 11.5, 12.7, 14.0. These results were shown similar patten with the experiment 1. Moreover, when the count-set method was applied, the NECR was shown as 42.1, 67.3, 92.1, 112.2, 130.7, 158.7, and SNR was shown as 15.2, 15.9, 15.6, 15.4, 15.5, 14.9. The NECR was increased but SNR was not shown same pattern. Conclusion: Increment of administered radioactivity improves the quality of image unconcerned with the pre-set method. However, NECR was not influenced by increment of total acquisition counts through simple increasing scan duration without increment of administered activity. In case of count-set method, the SNR was shown similar value despite of increment of radioactivity. So, the administered activity is more important than the scan duration. And we have to consider that evaluation of image quality using only SNR may not be appropriate.

  • PDF

Reduction of Injection Dose in 18F-FDG Fusion PET (PET-CT 검사에서 18F-FDG 투여량 감소에 대한 고찰)

  • Kim, Jong-Pil;Kim, Jae-Il;Lee, Hong-Jae;Kim, Jin-Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.2
    • /
    • pp.17-21
    • /
    • 2014
  • Purpose With the recent rise of social issue regarding radiation exposure, attention to medical radiation use has been placed under a great spotlight. During PET-CT examination, generally about 40% more of $^{18}F$-FDG is used than EANM recommendation. While maintaining the diagnostic test result, we hope to find optimal injection dose to minimize the $^{18}F$-FDG in patients by utilizing the latest PET-CT scanner which is equiped with the newest technology. Materials and Methods During this experiment, the Biograph Truepoint 40 (siemens, USA) installed in 2007 and mCT 64 (siemens, USA) installed in 2011 were used and evaluated NECR (noise-equivalent counting rate) by using a scatter phantom. For the image quality evaluation of each scanner, we injected 3.7, 4.44 and 5.18 MBq/kg of $^{18}F$-FDG in NEMA IEC Body Phantom and also evaluated SNR between two scanners by using the data acquired at 60, 70, 80, 90, 100, 110 and 120 sec per bed. For the clinical evaluation, actual data of patients who were injected $^{18}F$-FDG 3.7, 4.44, 5.18 MBq/kg were used to compare SNR and draw a final result. Results As a result, mCT 64 peak NECR value was 1.65e+005, which is 10% higher than Turepoint 40. SNR values using the IEC body phantom was 17.9%, 17.4% and 17.1% higher in $^{18}F$-FDG 3.7 MBq/kg, 4.44 MBq/kg and 5.18 MBq/kg. In clinical patients, SNR values of the image mCT 64 was 16.5, which is 25% higher than Turepoint 40 scanner. Conclusion To draw a conclusion from the test result of this experiment, the same quality of SNR could be attained even with 10% reduced injection dose, if when the duration is extended by 10 sec/bed. This optimal result was possible due to enhanced equipment. The NECR (one of the equipment's performance assessment criteria for the scanner) increased by 10% and the SNR (one of the image quality assessment criteria) also increased by 17.5%. Therefore, we can expect to reduce the injection dose without deterioration of image quality. In consequence, it will also help to decrease the patient's anxiety of the radiation exposure.

  • PDF