• Title/Summary/Keyword: Noise Cut-off

Search Result 113, Processing Time 0.021 seconds

Contrast reference values in panoramic radiographic images using an arch-form phantom stand

  • Shin, Jae-Myung;Lee, Chena;Kim, Jo-Eun;Huh, Kyung-Hoe;Yi, Won-Jin;Heo, Min-Suk;Choi, Soon-Chul;Lee, Sam-Sun
    • Imaging Science in Dentistry
    • /
    • v.46 no.3
    • /
    • pp.203-210
    • /
    • 2016
  • Purpose: The purpose of this study was to investigate appropriate contrast reference values (CRVs) by comparing the contrast in phantom and clinical images. Materials and Methods: Phantom contrast was measured using two methods: (1) counting the number of visible pits of different depths in an aluminum plate, and (2) obtaining the contrast-to-noise ratio (CNR) for 5 tissue-equivalent materials (porcelain, aluminum, polytetrafluoroethylene [PTFE], polyoxymethylene [POM], and polymethylmethacrylate [PMMA]). Four panoramic radiographs of the contrast phantom, embedded in the 4 different regions of the arch-form stand, and 1 real skull phantom image were obtained, post-processed, and compared. The clinical image quality evaluation chart was used to obtain the cut-off values of the phantom CRV corresponding to the criterion of being adequate for diagnosis. Results: The CRVs were obtained using 4 aluminum pits in the incisor and premolar region, 5 aluminum pits in the molar region, and 2 aluminum pits in the temporomandibular joint (TMJ) region. The CRVs obtained based on the CNR measured in the anterior region were: porcelain, 13.95; aluminum, 9.68; PTFE, 6.71; and POM, 1.79. The corresponding values in the premolar region were: porcelain, 14.22; aluminum, 8.82; PTFE, 5.95; and POM, 2.30. In the molar region, the following values were obtained: porcelain, 7.40; aluminum, 3.68; PTFE, 1.27; and POM, - 0.18. The CRVs for the TMJ region were: porcelain, 3.60; aluminum, 2.04; PTFE, 0.48; and POM, - 0.43. Conclusion: CRVs were determined for each part of the jaw using the CNR value and the number of pits observed in phantom images.

A 0.18-μm CMOS Baseband Circuits for the IEEE 802.15.4g MR-OFDM SUN Standard (IEEE 802.15.4g MR-OFDM SUN 표준을 지원하는 0.18-μm CMOS 기저대역 회로 설계에 관한 연구)

  • Bae, Jun-Woo;Kim, Chang-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.3
    • /
    • pp.685-690
    • /
    • 2013
  • This paper has proposed a multi-channel and wide gain-range baseband circuit blocks for the IEEE 802.15.4g MR-OFDM SUN systems. The proposed baseband circuit blocks consist of two negative-feedback VGAs, an active-RC 5th-order chebyshev low-pass-filter, and a DC-offset cancellation circuit. The proposed baseband circuit blocks provide 1 dB cut-off frequencies of 100 kHz, 200 kHz, 400 kHz, and 600 kHz respectively, and achieve a wide gain-range of +7 dB~+84 dB with 1 dB step. In addition, a DC-offset cancellation circuit has been adopted to mitigate DC-offset problems in direct-conversion receiver. Simulation results show a maximum input differential voltage of $1.5V_{pp}$ and noise figure of 42 dB and 37.6 dB at 5 kHz and 500 kHz, respectively. The proposed I-and Q-path baseband circuits have been implemented in $0.18-{\mu}m$ CMOS technology and consume 17 mW from a 1.8 V supply voltage.

TREATMENT OF DENTAL CARIES BY ER:YAG LASER IN CHILDREN (소아 환자에서 Er:YAG Laser를 이용한 우식 병소의 처치)

  • Jang, Eun-Young;Lee, Sang-Ho;Lee, Chang-Seop
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.27 no.4
    • /
    • pp.558-563
    • /
    • 2000
  • The lasers have been used in dentistry for more than 30 years and the application of lasers for drilling dental hard tissue has been investigated since the early developement of lasers. Recently, the Er:YAG laser was invented for hard tissue ablation. The Er:YAG laser, having a wavelength of 2.94um, is highly absorbed in both water and hydroxiapatite, leading to a very effective material for hard tissue removal by bursting off the solid tissue component that is, enamel and dentin are removed by the Er :YAG laser by water vaporization and microexplosion, without any melting of inorganic tissues. Therefore, the Er:YAG laser produced round craters with well defined margins and the surrounding tissues had no cracks and no charring. When used for cavity preparation, pulpal damage should not occur if hear buildup is minimized by careful selection of exposure parameters and by use of a water spray. The present study demonstrated that the Er:YAG laser cut the tooth substance adequately for composite resin restoration, without having undesirable side effects such as harmful effects on the pulp, discoloration or cracking etc. Also, the child patients were well cooperative during laser treatment mainly because of little noise, lesser vibration and minimal pain compared to conventional means of cavity preparation.

  • PDF