• Title/Summary/Keyword: Noise Attack

Search Result 136, Processing Time 0.038 seconds

A Scheme for Improvement of Positioning Accuracy Based on BSS in Jamming Environments (재밍 환경에서 BSS 기반 측위 정확도 향상 기법)

  • Cha, Gyeong Hyeon;Song, Yu Chan;Hwang, Yu Min;Sang, Lee Jae;Kim, Jin Young;Shin, Yoan
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.4
    • /
    • pp.58-63
    • /
    • 2015
  • Due to GPS signal's vulnerability of jamming attack, various enhancement techniques are needed. Among variety of techniques, we focused on GPS receiver's anti-jamming techniques. There are many anti-jamming methods at GPS receivers which include filtering methods in time domain, frequency domain and space domain. However, these methods are ineffective to signals, which include both jamming and noise. To solve the problem, this paper proposes a jamming separation scheme by using a BSS method in a jamming environment. As separated GPS signals include noise after the jamming separation method, it is difficult to receive accurate GPS signals. For this reason, this paper also proposes a wavelet de-noising method to effectively eliminate noise. Experimental results of this paper are based on a real field test data of an integrated GPS/QZSS/Wi-Fi positioning system. At the end, the simulation result demonstrates its superiority by showing improved positioning accuracy.

Transonic Flutter Characteristics of Supercritical Airfoils Considering Shockwave and Flow Separation Effects (충격파 및 유동박리 효과를 고려한 초임계 에어포일의 천음속 플러터 특성)

  • Kim, Dong-Hyun;Kim, Yu-Sung;Kim, Yo-Han;Kim, Seok-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.167-174
    • /
    • 2008
  • In this study, flutter analyses for supercritical airfoil have been conducted in transonic region. Advanced computational analysis system based on computational fluid dynamics (CFD) and computational structural dynamics (CSD) has been developed in order to investigate detailed static and dynamic responses of supercritical airfoil. Reynolds-averaged Navier-Stokes equations with Spalart-Allmaras (S-A) and SST ${\kappa}-{\omega}$ turbulence models are solved for unsteady flow problems. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of cascades for fluid-structure interaction (FSI) problems. Also, flow-induced vibration (FIV) analyses for various supercritical airfoil models have been conducted. Detailed flutter responses for supercritical are presented to show the physical performance and vibration characteristics in various angle of attack.

  • PDF

Deceleration Method of Munition to used Soft Recovery System for Smart Munition (지능형 포탄의 저 감속 회수장치를 이용한 포탄의 감속방법)

  • Kim, Myoung-Gu;Cho, Chong-Du;Lee, Seung-Su;Yu, Il-Young;Chang, Kwe-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.9
    • /
    • pp.777-784
    • /
    • 2007
  • With the development of micro electronic circuits and optical equipment, the demand for developing smart munitions with the ability to autonomously search for and attack targets has increased. Since the electronic components within smart munitions are affected by high temperatures, pressure, and impulsive forces upon the combustion of gunpowder, stability and reliability need to be secured for them. Securing those stability and reliability requires soft recovery system which can decelerate smart munitions. A theoretical analysis of flow is performed for the secure recovery of bullets on the basis of Euler equation for compressible fluids. The inner pressure on a pressure tube, the speeds of bullets, and the deceleration of munitions are calculated theoretically. Theoretical results are compared with the data from the experiment with soft recovery system set up at the laboratory.

Nonlinear Characteristics of Flow Separation Induced Vibration at Low-Speed Using Coupled CSD and CFD technique (전산구조진동/전산유체 기법을 연계한 저속 유동박리 유발 비선형 진동특성 연구)

  • Kim, Dong-Hyun;Chang, Tae-Jin;Kwon, Hyuk-Jun;Lee, In
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.140-146
    • /
    • 2002
  • The fluid induced vibration (FIV) phenomena of a 2-D.O.F airfoil system have been investigated in low Reynolds number incompressible flow region. Unsteady flows with viscosity are computed using two-dimensional incompressible Navier-stokes code. To validate developed Navier-Stokes code, steady and unsteady flow fields around airfoil are analyzed. The present fluid/structure interaction analysis is based on the most accurate computational approach with computational fluid dynamics (CSD) and computational structural dynamics (CSD) techniques. The highly nonlinear fluid/structure interaction phenomena due to severe flow separations have been analyzed fur the low Reynolds region (R$_{N}$ =500~5000) that has a dominancy of flow viscosity. The effect of R$_{N}$ on the fluid/structure coupled vibration instability of 2-DOF airfoil system is presented and the effect of initial angle of attack on the dynamic instability are also shown.own.

  • PDF

Implementation of the omnidirectional target bearing detector utilizing towed linear arrays (예인선배열 센서를 이용한 전방위 표적방위 탐지기 구현)

  • 이성은;천승용;황수복;이형욱
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.59-64
    • /
    • 2002
  • Passive sonar system forms the various beams in any desired directions to obtain the improvement in Signal-to-Noise(S/N) ratio, bearing detection and localization of targets, and the attenuation of interferences from other directions. Detection of modern underwater targets is becoming increasingly difficult as noise reduction technology leads to considerably low-level acoustic emissions. Therefore, the improvement of beamforming is very important to detect modern underwater targets at the long range in the complex environmental sea. Also, to react to the fast attack mobiles such as torpedoes, port and starboard discrimination is required to be performed very quickly. In this paper, we proposed the implementation of omnidirectional target bearing detector without port and starboard ambiguity to detect effectively the low-level underwater targets. The port and starboard discrimination is performed by cardioid processing and the improvement of beamforming utilizes the cross correlation matrix of individual hydrophone pairs of linear array sensors. The sea test result shows that the system implemented is good for the detection of the low-level underwater targets.

Development of Movable nose crossing turnout on concrete track using Fast Clip (Fast clip을 적용한 콘크리트궤도용 노스가동 분기기 개발)

  • Hwang, Kwang-Ha;Ryou, Ki-Tae;Park, Chun-Bok;Park, Kwang-Ryoun;Yun, Byung-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.287-296
    • /
    • 2011
  • Turnout is a mechanical installation enabling railway trains to be guided from one track to another at a railway junction. A movable nose crossing frog is a device used at a railway turnout to eliminate the gap at the common crossing (High manganese, block, assembly crossing)which can cause impact damage, noise and vibration. Our government has a plan speed up of conventional line to 250km/h semi-high speed. We had already developed flexible turnout with fixed crossing(High manganese) and SFC fastening system can cover in the semi-high speed line In this study is about development of the movable nose crossing turnout available Semi-high speed line on concrete track. This paper describes about geometry, attack angle, bending stress at the nose, switching force, safety of continuous welded long rails. This movable nose crossing turnout is expected greatly increases passing speed of turnout in national railway.

  • PDF

Detection of Abnormal Signals in Gas Pipes Using Neural Networks

  • Min, Hwang-Ki;Park, Cheol-Hoon
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.669-670
    • /
    • 2008
  • In this paper, we present a real-time system to detect abnormal events on gas pipes, based on the signals which are observed through the audio sensors attached on them. First, features are extracted from these signals so that they are robust to noise and invariant to the distance between a sensor and a spot at which an abnormal event like an attack on the gas pipes occurs. Then, a classifier is constructed to detect abnormal events using neural networks. It is a combination of two neural network models, a Gaussian mixture model and a multi-layer perceptron, for the reduction of miss and false alarms. The former works for miss alarm prevention and the latter for false alarm prevention. The experimental result with real data from the actual gas system shows that the proposed system is effective in detecting the dangerous events in real-time with an accuracy of 92.9%.

  • PDF

CFD SIMULATION AND ANALYSIS OF AERODYNAMIC CHARACTERISTICS OF SMALL DUCTED FAN AIRCRAFT (소형 덕트 팬 항공기의 전산해석 및 공력특성 분석)

  • Kim, C.W.;Choi, S.W.;Ahn, S.M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.14-16
    • /
    • 2010
  • A Duct surrounding a fan is known to reduce the tip loss and increase the fan performance efficiency. It also reduces the fan noise drastically. Ducted fan, therefore, has been focused to be a promising candidate for high efficient propulsion system. In this study, a small plane having ducted fan which can be tilted for vertical take-off and landing, is analyzed by CFD and its aerodynamic characteristics are compared. Ductef fan aircraft has small range of angle of attack for mininum drag and duct design should be focused for efficient ducted fan aircraft.

  • PDF

Application of Flexible Sintered Brake Pad for TTX (한국형 틸팅열차용 Flexible 소결 브레이크 패드 적용 연구)

  • Ku, Seong-Mo;Lee, Dong-Kyun;Ko, Tae-Hwan;Na, Jong-Tae;Kim, Sang-Ho
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.597-603
    • /
    • 2010
  • Metallic sintered brake pads are often applied to Mid/High Speed Train due to its high strength and thermal characteristics. Because of its imbalance contact between discs and pads can greatly influence the life span, one sided wear, discs attack/crack and threat the safety of the train during operation. In this research, we analyzed pressure/temperature distribution between brake pads and disks. Analyzed data had been verified and modified to conduct further tests of Flexible brake pads with small/full-scale dynamo test. Flexible brake pads were installed to TTX train to conduct further tests to identify the differences between Rigid brake pads and Flexible brake pads. In result, Flexible brake pads showed outstanding disk thermal stability, one sided wear, noise and life of pad than rigid brake pad.

  • PDF

A Novel Image Encryption Using Calligraphy Based Scan Method and Random Number

  • Sivakumar, T;Venkatesan, R
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.6
    • /
    • pp.2317-2337
    • /
    • 2015
  • Cryptography provides an effective solution to secure the communication over public networks. The communication over public networks that includes electronic commerce, business and military services, necessitates the requirement of simple and robust encryption techniques. In this paper, a novel image encryption method which employs calligraphy based hybrid scan and random number is presented. The original image is scrambled by pixel position permutation with calligraphy based diagonal and novel calligraphy based scan patterns. The cipher image is obtained by XORing the scrambled image with random numbers. The suggested method resists statistical, differential, entropy, and noise attacks which have been demonstrated with a set of standard images.