• Title/Summary/Keyword: Nodes deployment

Search Result 152, Processing Time 0.025 seconds

The application of the combinatorial schemes for the layout design of Sensor Networks (센서 네트워크 구축에서의 Combinatorial 기법 적용)

  • Kim, Joon-Mo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.7
    • /
    • pp.9-16
    • /
    • 2008
  • For the efficient routing on a Sensor Network, one may consider a deployment problem to interconnect the sensor nodes optimally. There is an analogous theoretic problem: the Steiner Tree problem of finding the tree that interconnects given points on a plane optimally. One may use the approximation algorithm for the problem to find out the deployment that interconnects the sensor nodes almost optimally. However, the Steiner Tree problem is to interconnect mathematical set of points on a Euclidean plane, and so involves particular cases that do not occur on Sensor Networks. Thus the approach of using the algorithm does not make a proper way of analysis. Differently from the randomly given locations of mathematical points on a Euclidean plane, the locations of sensors on Sensor Networks are assumed to be physically dispersed over some moderate distance with each other. By designing an approximation algorithm for the Sensor Networks in terms of that physical property, one may produce the execution time and the approximation ratio to the optimality that are appropriate for the problem of interconnecting Sensor Networks.

A Survey on 5G Enabled Multi-Access Edge Computing for Smart Cities: Issues and Future Prospects

  • Tufail, Ali;Namoun, Abdallah;Alrehaili, Ahmed;Ali, Arshad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.107-118
    • /
    • 2021
  • The deployment of 5G is in full swing, with a significant yearly growth in the data traffic expected to reach 26% by the year and data consumption to reach 122 EB per month by 2022 [10]. In parallel, the idea of smart cities has been implemented by various governments and private organizations. One of the main objectives of 5G deployment is to help develop and realize smart cities. 5G can support the enhanced data delivery requirements and the mass connection requirements of a smart city environment. However, for specific high-demanding applications like tactile Internet, transportation, and augmented reality, the cloud-based 5G infrastructure cannot deliver the required quality of services. We suggest using multi-access edge computing (MEC) technology for smart cities' environments to provide the necessary support. In cloud computing, the dependency on a central server for computation and storage adds extra cost in terms of higher latency. We present a few scenarios to demonstrate how the MEC, with its distributed architecture and closer proximity to the end nodes can significantly improve the quality of services by reducing the latency. This paper has surveyed the existing work in MEC for 5G and highlights various challenges and opportunities. Moreover, we propose a unique framework based on the use of MEC for 5G in a smart city environment. This framework works at multiple levels, where each level has its own defined functionalities. The proposed framework uses the MEC and introduces edge-sub levels to keep the computing infrastructure much closer to the end nodes.

Community Model for Smart TV over the Top Services

  • Pandey, Suman;Won, Young Joon;Choi, Mi-Jung;Gil, Joon-Min
    • Journal of Information Processing Systems
    • /
    • v.12 no.4
    • /
    • pp.577-590
    • /
    • 2016
  • We studied the current state-of-the-art of Smart TV, the challenges and the drawbacks. Mainly we discussed the lack of end-to-end solution. We then illustrated the differences between Smart TV and IPTV from network service provider point of view. Unlike IPTV, viewer of Smart TV's over-the-top (OTT) services could be global, such as foreign nationals in a country or viewers having special viewing preferences. Those viewers are sparsely distributed. The existing TV service deployment models over Internet are not suitable for such viewers as they are based on content popularity, hence we propose a community based service deployment methodology with proactive content caching on rendezvous points (RPs). In our proposal, RPs are intermediate nodes responsible for caching routing and decision making. The viewer's community formation is based on geographical locations and similarity of their interests. The idea of using context information to do proactive caching is itself not new, but we combined this with "in network caching" mechanism of content centric network (CCN) architecture. We gauge the performance improvement achieved by a community model. The result shows that when the total numbers of requests are same; our model can have significantly better performance, especially for sparsely distributed communities.

Policy for planned placement of sensor nodes in large scale wireless sensor network

  • Sharma, Vikrant;Patel, R.B;Bhadauria, HS;Prasad, D
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3213-3230
    • /
    • 2016
  • Sensor node (SN) is a crucial part in any remote monitoring system. It is a device designed to monitor the particular changes taking place in its environs. Wireless sensor network (WSN) is a system formed by the set of wirelessly connected SNs placed at different geographical locations within a target region. Precise placement of SNs is appreciated, as it affects the efficiency and effectiveness of any WSN. The manual placement of SNs is only feasible for small scale regions. The task of SN placement becomes tedious, when the size of a target region is extremely large and manually unreachable. In this research article, an automated mechanism for fast and precise deployment of SNs in a large scale target region has been proposed. It uses an assembly of rotating cannons to launch the SNs from a moving carrier helicopter. The entire system is synchronized such that the launched SNs accurately land on the pre-computed desired locations (DLs). Simulation results show that the proposed model offers a simple, time efficient and effective technique to place SNs in a large scale target region.

ASTAS: Architecture for Scalable and Transparent Anycast Services

  • Stevens, Tim;De Leenheer, Marc;Develder, Chris;De Turck, Filip;Dhoedt, Bart;Demeester, Piet
    • Journal of Communications and Networks
    • /
    • v.9 no.4
    • /
    • pp.457-465
    • /
    • 2007
  • Native information provider(IP) anycast suffers from routing scalability issues and the lack of stateful communication support. For this reason, we propose architecture for scalable and transparent anycast services(ASTAS), a proxy-based architecture that provides support for stateful anycast communications, while retaining the transparency offered by native anycast. Dynamic resource assignment for each initiated session guarantees that a connection is established with the most suitable target server, based on network and server conditions. Traffic engineering in the overlay can be realized in an effective way due to the dissemination of aggregated state information in the anycast overlay. To minimize the total deployment cost for ASTAS architectures, we propose optimized proxy placement and path finding heuristics based on look-ahead information gathered in network nodes. Contrary to a regular integer linear program(ILP) formulation, these heuristics allow to optimize proxy placement in large networks. A use case on a European reference network illustrates that lower proxy costs enable proxy deployment closer to the end-users, resulting in a reduced network load.

Dimensioning of linear and hierarchical wireless sensor networks for infrastructure monitoring with enhanced reliability

  • Ali, Salman;Qaisar, Saad Bin;Felemban, Emad A.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.3034-3055
    • /
    • 2014
  • Wireless Sensor Networks have extensively been utilized for ambient data collection from simple linear structures to dense tiered deployments. Issues related to optimal resource allocation still persist for simplistic deployments including linear and hierarchical networks. In this work, we investigate the case of dimensioning parameters for linear and tiered wireless sensor network deployments with notion of providing extended lifetime and reliable data delivery over extensive infrastructures. We provide a single consolidated reference for selection of intrinsic sensor network parameters like number of required nodes for deployment over specified area, network operational lifetime, data aggregation requirements, energy dissipation concerns and communication channel related signal reliability. The dimensioning parameters have been analyzed in a pipeline monitoring scenario using ZigBee communication platform and subsequently referred with analytical models to ensure the dimensioning process is reflected in real world deployment with minimum resource consumption and best network connectivity. Concerns over data aggregation and routing delay minimization have been discussed with possible solutions. Finally, we propose a node placement strategy based on a dynamic programming model for achieving reliable received signals and consistent application in structural health monitoring with multi hop and long distance connectivity.

Mobile Contents Adaptation Network using Active Network Mechanisms (액티브 네트워크 메커니즘을 이용한 이동 컨텐츠 적응형 네트워크)

  • 김기조;이준호;임경식;오승희;남택용;손승원
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.4
    • /
    • pp.384-392
    • /
    • 2004
  • Mobile contents service providers have some difficulties to timely and proper service deployment due to rapid development cycle of diverse portable devices with different capabilities. A way to resolve the problem is to introduce a mobile contents service paltform that can adapt original mobile contents to diverse devices dynamically and automatically. In this paper, we propose a mobile contents service platform based on active network mechanisms, called Mobile Content Adaptation Network(MobiCAN). The MobiCAN node provides effective service deployment, execution, and maintenance features and accommodates service layering and service customization capabilities for easy deployment. The basic functional units of the MobiCAN node are micro services with well-defined service interfaces and service layering features. For reliable services among the MobiCAN nodes, we design new distributed and robust Overlay Management Protocols(OMPs). As an example of practical MobiCAN applications, we finally describe Dynamic Contents Customization Proxy(DCCP) service.

A Distributed Frequency Synchronization Technique for OFDMA-Based Mesh Networks Using Bio-Inspired Algorithm (Bio-inspired 알고리즘을 이용한 OFDMA 기반 메쉬 네트워크의 분산 주파수 동기화 기법)

  • Yoo, Hyun-Jong;Lee, Mi-Na;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.11
    • /
    • pp.1022-1032
    • /
    • 2012
  • In OFDMA-based wireless mesh networks, synchronization of carrier frequencies among adjacent nodes is known to be difficult. In this paper, a distributed synchronization technique is proposed to solve the synchronization problem in OFDMA-based wireless mesh networks by using the bio-inspired algorithm. In the proposed approach, carrier frequencies of all nodes in a mesh network are converged into one frequency by locally synchronizing the frequencies of adjacent nodes. It may take a long time to be converged in some topologies since the convergence characteristic of carrier frequencies in a mesh network may vary depending on the size of the network and deployment of nodes. It is shown that fast frequency synchronization, not heavily depending on the topology, can be achieved through the proposed algorithm with an adjustable weight.

Mutual Authenticate Protocol among Sensor for Network Centric Warfare (네트워크 중심전을 위한 센서간의 상호인증기법)

  • Yang, Ho-Kyung;Cha, Hyun-Jong;Shin, Hyo-Young;Ryou, Hwnag-Bin
    • Convergence Security Journal
    • /
    • v.12 no.6
    • /
    • pp.25-30
    • /
    • 2012
  • As the network composed of numerous sensor nodes, sensor network conducts the function of sensing the surrounding information by sensor and of the sensed information. Our military has also developed ICT(Information and Communication Technology) along with the methods for effective war by sharing smooth information of battlefield resources through network with each object. In this paper, a sensor network is clustered in advance and a cluster header (CH) is elected for clusters. Before deployment, a certificate is provided between the BS and the sensor nodes, and after clustering, authentication is done between the BS and the sensor nodes. Moreover, inter-CH authentication technique is used to allow active response to destruction or replacement of sensor nodes. Also, because authentication is done twice, higher level of security can be provided.

An Efficient Transport Protocol for Ad Hoc Networks: An End-to-End Freeze TCP with Timestamps

  • Cho, Sung-Rae;Sirisena, Harsha;Pawlikowski, Krzysztof
    • Journal of Communications and Networks
    • /
    • v.6 no.4
    • /
    • pp.376-386
    • /
    • 2004
  • In ad hoc networks, loss-based congestion window progression by the traditional means of duplicate ACKs and timeouts causes high network buffer utilization due to large bursts of data, thereby degrading network bandwidth utilization. Moreover, network-oriented feedbacks to handle route disconnection events may impair packet forwarding capability by adding to MAC layer congestion and also dissipate considerable network resources at reluctant intermediate nodes. Here, we propose a new TCP scheme that does not require the participation of intermediate nodes. It is a purely end-to-end scheme using TCP timestamps to deduce link conditions. It also eliminates spurious reductions of the transmission window in cases of timeouts and fast retransmits. The scheme incorporates a receiver-oriented rate controller (rater), and a congestion window delimiter for the 802.11 MAC protocol. In addition, the transient nature of medium availability due to medium contention during the connection time is addressed by a freezing timer (freezer) at the receiver, which freezes the sender whenever heavy contention is perceived. Finally, the sender-end is modified to comply with the receiver-end enhancements, as an optional deployment. Simulation studies show that our modification of TCP for ad hoc networks offers outstanding performance in terms of goodput, as well as throughput.