• Title/Summary/Keyword: Nodes Clustering

Search Result 464, Processing Time 0.022 seconds

Properties of a Social Network Topology of Livestock Movements to Slaughterhouse in Korea (도축장 출하차량 이동의 사회연결망 특성 분석)

  • Park, Hyuk;Bae, Sunhak;Pak, Son-Il
    • Journal of Veterinary Clinics
    • /
    • v.33 no.5
    • /
    • pp.278-285
    • /
    • 2016
  • Epidemiological studies have shown the association between transportation of live animals and the potential transmission of infectious disease between premises. This finding was also observed in the 2014-2015 foot-and-mouth disease (FMD) outbreak in Korea. Furthermore, slaughterhouses played a key role in the global spread of the FMD virus during the epidemic. In this context, in-depth knowledge of the structure of direct and indirect contact between slaughterhouses is paramount for understanding the dynamics of FMD transmission. But the social network structure of vehicle movements to slaughterhouses in Korea remains unclear. Hence, the aim of this study was to configure a social network topology of vehicle movements between slaughterhouses for a better understanding of how they are potentially connected, and to explore whether FMD outbreaks can be explained by the network properties constructed in the study. We created five monthly directed networks based on the frequency and chronology of on- and off-slaughterhouse vehicle movements. For the monthly network, a node represented a slaughterhouse, and an edge (or link) denoted vehicle movement between two slaughterhouses. Movement data were retrieved from the national Korean Animal Health Integrated System (KAHIS) database, which tracks the routes of individual vehicle movements using a global positioning system (GPS). Electronic registration of livestock movements has been a mandatory requirement since 2013 to ensure traceability of such movements. For each of the five studied networks, the network structures were characterized by small-world properties, with a short mean distance, a high clustering coefficient, and a short diameter. In addition, a strongly connected component was observed in each of the created networks, and this giant component included 94.4% to 100% of all network nodes. The characteristic hub-and-spoke type of structure was not identified. Such a structural vulnerability in the network suggests that once an infectious disease (such as FMD) is introduced in a random slaughterhouse within the cohesive component, it can spread to every other slaughterhouse in the component. From an epidemiological perspective, for disease management, empirically derived small-world networks could inform decision-makers on the higher potential for a large FMD epidemic within the livestock industry, and could provide insights into the rapid-transmission dynamics of the disease across long distances, despite a standstill of animal movements during the epidemic, given a single incursion of infection in any slaughterhouse in the country.

Rough Computational Annotation and Hierarchical Conserved Area Viewing Tool for Genomes Using Multiple Relation Graph. (다중 관계 그래프를 이용한 유전체 보존영역의 계층적 시각화와 개략적 전사 annotation 도구)

  • Lee, Do-Hoon
    • Journal of Life Science
    • /
    • v.18 no.4
    • /
    • pp.565-571
    • /
    • 2008
  • Due to rapid development of bioinformatics technologies, various biological data have been produced in silico. So now days complicated and large scale biodata are used to accomplish requirement of researcher. Developing visualization and annotation tool using them is still hot issues although those have been studied for a decade. However, diversity and various requirements of users make us hard to develop general purpose tool. In this paper, I propose a novel system, Genome Viewer and Annotation tool (GenoVA), to annotate and visualize among genomes using known information and multiple relation graph. There are several multiple alignment tools but they lose conserved area for complexity of its constrains. The GenoVA extracts all associated information between all pair genomes by extending pairwise alignment. High frequency conserved area and high BLAST score make a block node of relation graph. To represent multiple relation graph, the system connects among associated block nodes. Also the system shows the known information, COG, gene and hierarchical path of block node. In this case, the system can annotates missed area and unknown gene by navigating the special block node's clustering. I experimented ten bacteria genomes for extracting the feature to visualize and annotate among them. GenoVA also supports simple and rough computational annotation of new genome.

A Cluster Based Energy Efficient Tree Routing Protocol in Wireless Sensor Networks (광역 WSN 을 위한 클러스팅 트리 라우팅 프로토콜)

  • Nurhayati, Nurhayati;Choi, Sung-Hee;Lee, Kyung-Oh
    • Annual Conference of KIPS
    • /
    • 2011.04a
    • /
    • pp.576-579
    • /
    • 2011
  • Wireless sensor network are widely all over different fields. Because of its distinguished characteristics, we must take account of the factor of energy consumed when designing routing protocol. Wireless sensor networks consist of small battery powered devices with limited energy resources. Once deployed, the small sensor nodes are usually inaccessible to the user, and thus replacement of the energy source is not feasible. Hence, energy efficiency is a key design issue that needs to be enhanced in order to improve the life span of the network. In BCDCP, all sensors sends data from the CH (Cluster Head) and then to the BS (Base Station). BCDCP works well in a smallscale network however is not preferred in a large scale network since it uses much energy for long distance wireless communication. TBRP can be used for large scale network, but it weakness lies on the fact that the nodedry out of energy easily since it uses multi-hops transmission data to the Base Station. Here, we proposed a routing protocol. A Cluster Based Energy Efficient Tree Routing Protocol (CETRP) in Wireless Sensor Networks (WSNs) to prolong network life time through the balanced energy consumption. CETRP selects Cluster Head of cluster tree shape and uses maximum two hops data transmission to the Cluster Head in every level. We show CETRP outperforms BCDCP and TBRP with several experiments.

Comparing the 2015 with the 2022 Revised Primary Science Curriculum Based on Network Analysis (2015 및 2022 개정 초등학교 과학과 교육과정에 대한 비교 - 네트워크 분석을 중심으로 -)

  • Jho, Hunkoog
    • Journal of Korean Elementary Science Education
    • /
    • v.42 no.1
    • /
    • pp.178-193
    • /
    • 2023
  • The aim of this study was to investigate differences in the achievement standards from the 2015 to the 2022 revised national science curriculum and to present the implications for science teaching under the revised curriculum. Achievement standards relevant to primary science education were therefore extracted from the national curriculum documents; conceptual domains in the two curricula were analyzed for differences; various kinds of centrality were computed; and the Louvain algorithm was used to identify clusters. These methods revealed that, in the revised compared with the preceding curriculum, the total number of nodes and links had increased, while the number of achievement standards had decreased by 10 percent. In the revised curriculum, keywords relevant to procedural skills and behavior received more emphasis and were connected to collaborative learning and digital literacy. Observation, survey, and explanation remained important, but varied in application across the fields of science. Clustering revealed that the number of categories in each field of science remained mostly unchanged in the revised compared with the previous curriculum, but that each category highlighted different skills or behaviors. Based on those findings, some implications for science instruction in the classroom are discussed.