• Title/Summary/Keyword: Nodes Clustering

Search Result 464, Processing Time 0.026 seconds

The Improved Binary Tree Vector Quantization Using Spatial Sensitivity of HVS (인간 시각 시스템의 공간 지각 특성을 이용한 개선된 이진트리 벡터양자화)

  • Ryu, Soung-Pil;Kwak, Nae-Joung;Ahn, Jae-Hyeong
    • The KIPS Transactions:PartB
    • /
    • v.11B no.1
    • /
    • pp.21-26
    • /
    • 2004
  • Color image quantization is a process of selecting a set of colors to display an image with some representative colors without noticeable perceived difference. It is very important in many applications to display a true color image in a low cost color monitor or printer. The basic problem is how to display 256 colors or less colors, called color palette, In this paper, we propose improved binary tree vector quantization based on spatial sensitivity which is one of the human visual properties. We combine the weights based on the responsibility of human visual system according to changes of three Primary colors in blocks of images with the process of splitting nodes using eigenvector in binary tree vector quantization. The test results show that the proposed method generates the quantized images with fine color and performs better than the conventional method in terms of clustering the similar regions. Also the proposed method can get the better result in subjective quality test and WSNR.

Design of Robust Face Recognition System Realized with the Aid of Automatic Pose Estimation-based Classification and Preprocessing Networks Structure

  • Kim, Eun-Hu;Kim, Bong-Youn;Oh, Sung-Kwun;Kim, Jin-Yul
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2388-2398
    • /
    • 2017
  • In this study, we propose a robust face recognition system to pose variations based on automatic pose estimation. Radial basis function neural network is applied as one of the functional components of the overall face recognition system. The proposed system consists of preprocessing and recognition modules to provide a solution to pose variation and high-dimensional pattern recognition problems. In the preprocessing part, principal component analysis (PCA) and 2-dimensional 2-directional PCA ($(2D)^2$ PCA) are applied. These functional modules are useful in reducing dimensionality of the feature space. The proposed RBFNNs architecture consists of three functional modules such as condition, conclusion and inference phase realized in terms of fuzzy "if-then" rules. In the condition phase of fuzzy rules, the input space is partitioned with the use of fuzzy clustering realized by the Fuzzy C-Means (FCM) algorithm. In conclusion phase of rules, the connections (weights) are realized through four types of polynomials such as constant, linear, quadratic and modified quadratic. The coefficients of the RBFNNs model are obtained by fuzzy inference method constituting the inference phase of fuzzy rules. The essential design parameters (such as the number of nodes, and fuzzification coefficient) of the networks are optimized with the aid of Particle Swarm Optimization (PSO). Experimental results completed on standard face database -Honda/UCSD, Cambridge Head pose, and IC&CI databases demonstrate the effectiveness and efficiency of face recognition system compared with other studies.

Analysis of Energy Consumption and Processing Delay of Wireless Sensor Networks according to the Characteristic of Applications (응용프로그램의 특성에 따른 무선센서 네트워크의 에너지 소모와 처리 지연 분석)

  • Park, Chong Myung;Han, Young Tak;Jeon, Soobin;Jung, Inbum
    • Journal of KIISE
    • /
    • v.42 no.3
    • /
    • pp.399-407
    • /
    • 2015
  • Wireless sensor networks are used for data collection and processing from the surrounding environment for various applications. Since wireless sensor nodes operate on low computing power, restrictive battery capacity, and low network bandwidth, their architecture model has greatly affected the performance of applications. If applications have high computation complexity or require the real-time processing, the centralized architecture in wireless sensor networks have a delay in data processing. Otherwise, if applications only performed simple data collection for long period, the distributed architecture wasted battery energy in wireless sensors. In this paper, the energy consumption and processing delay were analyzed in centralized and distributed sensor networks. In addition, we proposed a new hybrid architecture for wireless sensor networks. According to the characteristic of applications, the proposed method had the optimal number of wireless sensors in wireless sensor networks.

Analysis Process based on Modify K-means for Efficiency Improvement of Electric Power Data Pattern Detection (전력데이터 패턴 추출의 효율성 향상을 위한 변형된 K-means 기반의 분석 프로세스)

  • Jung, Se Hoon;Shin, Chang Sun;Cho, Yong Yun;Park, Jang Woo;Park, Myung Hye;Kim, Young Hyun;Lee, Seung Bae;Sim, Chun Bo
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.12
    • /
    • pp.1960-1969
    • /
    • 2017
  • There have been ongoing researches to identify and analyze the patterns of electric power IoT data inside sensor nodes to supplement the stable supply of power and the efficiency of energy consumption. This study set out to propose an analysis process for electric power IoT data with the K-means algorithm, which is an unsupervised learning technique rather than a supervised one. There are a couple of problems with the old K-means algorithm, and one of them is the selection of cluster number K in a heuristic or random method. That approach is proper for the age of standardized data. The investigator proposed an analysis process of selecting an automated cluster number K through principal component analysis and the space division of normal distribution and incorporated it into electric power IoT data. The performance evaluation results show that it recorded a higher level of performance than the old algorithm in the cluster classification and analysis of pitches and rolls included in the communication bodies of utility poles.

A Data Gathering Protocol for Multihop Transmission for Large Sensor Networks (대형 센서네트워크에서 멀티홉 전송을 이용한 데이터 수집 프로토콜)

  • Park, Jang-Su;Ahn, Byoung-Chul
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.1
    • /
    • pp.50-56
    • /
    • 2010
  • This paper proposes a data gathering method by adapting the mobile sink to prolong the whole operation time of large WSNs. After partitioning a network into several clusters, a mobile sink visits each cluster and collects data from it. An efficient protocol improves the energy efficiency by delivering messages from the mobile sink to the cluster head as well as reduces the data gathering delay, which is the disadvantage of the mobile sink. For the scalability of sensor network, the network architecture should support the multihop transmission in the duster rather than the single hop transmission. The process for the data aggregation linked to the travelling path is proposed to improve the energy consumption of intermediate nodes. The experiment results show that the proposed model is more efficient than legacy methods in the energy consumption and the data gathering time.

A clustering algorithm based on dynamic properties in Mobile Ad-hoc network (에드 혹 네트워크에서 노드의 동적 속성 기반 클러스터링 알고리즘 연구)

  • Oh, Young-Jun;Woo, Byeong-Hun;Lee, Kang-Whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.3
    • /
    • pp.715-723
    • /
    • 2015
  • In this paper, we propose a context-awareness routing algorithm DDV (Dynamic Direction Vector)-hop algorithm in Mobile Ad Hoc Networks. The existing algorithm in MANET, it has a vulnerability that the dynamic network topology and the absence of network expandability of mobility of nodes. The proposed algorithm performs cluster formation using a range of direction and threshold of velocity for the base-station, we calculate the exchange of the cluster head node probability using the direction and velocity for maintaining cluster formation. The DDV algorithm forms a cluster based on the cluster head node. As a result of simulation, our scheme could maintain the proper number of cluster and cluster members regardless of topology changes.

A Study on Classification of Waveforms Using Manifold Embedding Based on Commute Time (컴뮤트 타임 기반의 다양체 임베딩을 이용한 파형 신호 인식에 관한 연구)

  • Hahn, Hee-Il
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.2
    • /
    • pp.148-155
    • /
    • 2014
  • In this paper a commute time embedding is implemented by organizing patches according to the graph-based metric, and its properties are investigated via changing the number of nodes on the graph.. It is shown that manifold embedding methods generate the intrinsic geometric structures when waveforms such as speech or music instrumental sound signals are embedded on the low dimensional Euclidean space. Basically manifold embedding algorithms only project the training samples on the graph into an embedding subspace but can not generalize the learning results to test samples. They are very effective for data clustering but are not appropriate for classification or recognition. In this paper a commute time guided transform is adopted to enhance the generalization ability and its performance is analyzed by applying it to the classification of 6 kinds of music instrumental sounds.

A Study on Fuzzy Set-based Polynomial Neural Networks Based on Evolutionary Data Granulation (Evolutionary Data Granulation 기반으로한 퍼지 집합 다항식 뉴럴 네트워크에 관한 연구)

  • 노석범;안태천;오성권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.433-436
    • /
    • 2004
  • In this paper, we introduce a new Fuzzy Polynomial Neural Networks (FPNNS)-like structure whose neuron is based on the Fuzzy Set-based Fuzzy Inference System (FS-FIS) and is different from that of FPNNS based on the Fuzzy relation-based Fuzzy Inference System (FR-FIS) and discuss the ability of the new FPNNS-like structure named Fuzzy Set-based Polynomial Neural Networks (FSPNN). The premise parts of their fuzzy rules are not identical, while the consequent parts of the both Networks (such as FPNN and FSPNN) are identical. This difference results from the angle of a viewpoint of partition of input space of system. In other word, from a point of view of FS-FIS, the input variables are mutually independent under input space of system, while from a viewpoint of FR-FIS they are related each other. The proposed design procedure for networks architecture involves the selection of appropriate nodes with specific local characteristics such as the number of input variables, the order of the polynomial that is constant, linear, quadratic, or modified quadratic functions being viewed as the consequent part of fuzzy rules, and a collection of the specific subset of input variables. On the parameter optimization phase, we adopt Information Granulation (IC) based on HCM clustering algorithm and a standard least square method-based learning. Through the consecutive process of such structural and parametric optimization, an optimized and flexible fuzzy neural network is generated in a dynamic fashion. To evaluate the performance of the genetically optimized FSPNN (gFSPNN), the model is experimented with using the time series dataset of gas furnace process.

  • PDF

Innovation of technology and social changes - quantitative analysis based on patent big data (기술의 진보와 혁신, 그리고 사회변화: 특허빅데이터를 이용한 정량적 분석)

  • Kim, Yongdai;Jong, Sang Jo;Jang, Woncheol;Lee, Jongsu
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.6
    • /
    • pp.1025-1039
    • /
    • 2016
  • We introduce various methods to investigate the relations between innovation of technology and social changes by analyzing more than 4 millions of patents registered at United States Patent and Trademark Office(USPTO) from year 1985 to 2015. First, we review the history of patent law and its relation with the quantitative changes of registered patents. Second, we investigate the differences of technical innovations of several countries by use of cluster analysis based on the numbers of registered patents at several technical sectors. Third, we introduce the PageRank algorithm to define important nodes in network type data and apply the PageRank algorithm to find important technical sectors based on citation information between registered patents. Finally, we explain how to use the canonical correlation analysis to study relationship between technical innovation and social changes.

Design and Implementation of a Mobile Runtime Library for Execution of Large-scale Application (대용량 소프트웨어 실행을 위한 모바일 런타임 라이브러리 설계 및 구현)

  • Lee, Ye-In;Lee, Jong-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • Today's growth of the mobile communication infrastructure made mobile computing systems like cellular phones came next to or surpassed the desktop PCs in popularity due to their mobility. Although the performance of mobile devices is now being improved continuously, it is a current common sense that compute intensive large-scale applications can hardly run on any kind of mobile handset devices. To clear up this problem, we decided to exploit the mobile cluster computing system and surveyed the existing ones first. We found out, however, that most of them are not the actual implementations but a mobile cluster infrastructure proposal or idea suggestions for reliable mobile clustering. To make cell phones participated in cluster computing nodes, in this paper, we propose a redesigned JPVM cluster computing engine and a set of WIPI mobile runtime functions interfacing with it. And we also show the performance evaluation results of real parallel applications running on our Mobile-JPVM cluster computing systems. We find out by the performance evaluation that large-scale applications can sufficiently run on mobile devices such as cellular phones when using our mobile cluster computing engine.