• Title/Summary/Keyword: Nodes Clustering

Search Result 464, Processing Time 0.031 seconds

Energy Balancing Distribution Cluster With Hierarchical Routing In Sensor Networks (계층적 라우팅 경로를 제공하는 에너지 균등분포 클러스터 센서 네트워크)

  • Mary Wu
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.3
    • /
    • pp.166-171
    • /
    • 2023
  • Efficient energy management is a very important factor in sensor networks with limited resources, and cluster techniques have been studied a lot in this respect. However, a problem may occur in which energy use of the cluster header is concentrated, and when the cluster header is not evenly distributed over the entire area but concentrated in a specific area, the transmission distance of the cluster members may be large or very uneven. The transmission distance can be directly related to the problem of energy consumption. Since the energy of a specific node is quickly exhausted, the lifetime of the sensor network is shortened, and the efficiency of the entire sensor network is reduced. Thus, balanced energy consumption of sensor nodes is a very important research task. In this study, factors for balanced energy consumption by cluster headers and sensor nodes are analyzed, and a balancing distribution clustering method in which cluster headers are balanced distributed throughout the sensor network is proposed. The proposed cluster method uses multi-hop routing to reduce energy consumption of sensor nodes due to long-distance transmission. Existing multi-hop cluster studies sets up a multi-hop cluster path through a two-step process of cluster setup and routing path setup, whereas the proposed method establishes a hierarchical cluster routing path in the process of selecting cluster headers to minimize the overhead of control messages.

Evaluation of Structural and Functional Changes of Ecological Networks by Land Use Change in a Wetlandscape (토지이용변화에 따른 거시적 습지경관에서의 생태네트워크의 구조 및 기능적 변화 평가)

  • Kim, Bin;Park, Jeryang
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.3
    • /
    • pp.189-198
    • /
    • 2020
  • Wetlands, which provide various ecological services, have been regarded as an important nature-based solution for, for example, sustainable water quality improvement and buffering of impacts from climate change. Although the importance of conserving wetlands to reduce the impacts of various perturbations (e.g., changes of land use, climate, and hydrology) has been acknowledged, the possibility of applying these efforts as a nature-based solution in a macro-scale (e.g., landscape) has been insufficient. In this study, we examine the possibility of ecological network analysis that provides an engineering solution as a nature-based solution. Specifically, we analyzed how land use change affects the structural and functional characteristics (connectivity, network efficiency, and clustering coefficient) of the ecological networks by using the ecological networks generated by multiple dispersal models of the hypothetical inhabiting species in wetlandscape. Changes in ecological network characteristics were analyzed through simultaneously removing wetlands, with two initial conditions for surface area, in the zones where land use change occurs. We set a total number of four zones of land use change with different wetland densities. All analyses showed that mean degree and network efficiency were significantly reduced when wetlands in the zones with high wetland density were removed, and this phenomenon was intensified especially when zones contained hubs (nodes with high degree). On the other hand, we observed the clustering coefficient to increase. We suggest our approach for assessing the impacts of land use change on ecological networks, and with additional analysis on betweenness centrality, we expect it can provide a nature-based engineering solution for creating alternative wetlands.

EPR : Enhanced Parallel R-tree Indexing Method for Geographic Information System (EPR : 지리 정보 시스템을 위한 향상된 병렬 R-tree 색인 기법)

  • Lee, Chun-Geun;Kim, Jeong-Won;Kim, Yeong-Ju;Jeong, Gi-Dong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.9
    • /
    • pp.2294-2304
    • /
    • 1999
  • Our research purpose in this paper is to improve the performance of query processing in GIS(Geographic Information System) by enhancing the I/O performance exploiting parallel I/O and efficient disk access. By packing adjacent spatial data, which are very likely to be referenced concurrently, into one block or continuous disk blocks, the number of disk accesses and the disk access overhead for query processing can be decreased, and this eventually leads to the I/O time decrease. So, in this paper, we proposes EPR(Enhanced Parallel R-tree) indexing method which integrates the parallel I/O method of the previous Parallel R-tree method and a packing-based clustering method. The major characteristics of EPR method are as follows. First, EPR method arranges spatial data in the increasing order of proximity by using Hilbert space filling curve, and builds a packed R-tree by bottom-up manner. Second, with packing-based clustering in which arranged spatial data are clustered into continuous disk blocks, EPR method generates spatial data clusters. Third, EPR method distributes EPR index nodes and spatial data clusters on multiple disks through round-robin striping. Experimental results show that EPR method achieves up to 30% or more gains over PR method in query processing speed. In particular, the larger the size of disk blocks is and the smaller the size of spatial data objects is, the better the performance of query processing by EPR method is.

  • PDF

Characterization of Ecological Networks on Wetland Complexes by Dispersal Models (분산 모형에 따른 습지경관의 생태 네트워크 특성 분석)

  • Kim, Bin;Park, Jeryang
    • Journal of Wetlands Research
    • /
    • v.21 no.1
    • /
    • pp.16-26
    • /
    • 2019
  • Wetlands that provide diverse ecosystem services, such as habitat provision and hydrological control of flora and fauna, constitute ecosystems through interaction between wetlands existing in a wetlandscape. Therefore, to evaluate the wetland functions such as resilience, it is necessary to analyze the ecological connectivity that is formed between wetlands which also show hydrologically dynamic behaviors. In this study, by defining wetlands as ecological nodes, we generated ecological networks through the connection of wetlands according to the dispersal model of wetland species. The characteristics of these networks were then analyzed using various network metrics. In the case of the dispersal based on a threshold distance, while a high local clustering is observed compared to the exponential dispersal kernel and heavy-tailed dispersal model, it showed a low efficiency in the movement between wetlands. On the other hand, in the case of the stochastic dispersion model, a low local clustering with high efficiency in the movement was observed. Our results confirmed that the ecological network characteristics are completely different depending on which dispersal model is chosen, and one should be careful on selecting the appropriate model for identifying network properties which highly affect the interpretation of network structure and function.

Cluster-based Pairwise Key Establishment in Wireless Sensor Networks (센서 네트워크에서의 안전한 통신을 위한 클러스터 기반 키 분배 구조)

  • Chun Eunmi;Doh Inshil;Oh Hayoung;Park Soyoung;Lee Jooyoung;Chae Kijoon;Lee Sang-Ho;Nah Jaehoon
    • The KIPS Transactions:PartC
    • /
    • v.12C no.4 s.100
    • /
    • pp.473-480
    • /
    • 2005
  • We can obtain useful information by deploying large scale sensor networks in various situations. Security is also a major concern in sensor networks, and we need to establish pairwise keys between sensor nodes for secure communication. In this paper, we propose new pairwise key establishment mechanism based on clustering and polynomial sharing. In the mechanism, we divide the network field into clusters, and based on the polynomial-based key distribution mechanism we create bivariate Polynomials and assign unique polynomial to each cluster. Each pair of sensor nodes located in the same cluster can compute their own pairwise keys through assigned polynomial shares from the same polynomial. Also, in our proposed scheme, sensors, which are in each other's transmission range and located in different clusters, can establish path key through their clusterheads. However, path key establishment can increase the network overhead. The number of the path keys and tine for path key establishment of our scheme depend on the number of sensors, cluster size, sensor density and sensor transmission range. The simulation result indicates that these schemes can achieve better performance if suitable conditions are met.

A New Routing Algorithm for Performance improvement of Wireless Sensor Networks (무선 센서 네트워크의 성능 향상을 위한 새로운 라우팅 알고리즘)

  • Yang, Hyun-Suk;Kim, Do-Hyung;Park, Joon-Yeol;Lee, Tae-Bong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.1
    • /
    • pp.39-45
    • /
    • 2012
  • In this paper, a distributed 2-hop routing algorithm is proposed. The main purpose of the proposed algorithm is to reduce the overall power consumption of each sensor node so that the lifetime of WSN(wireless sensor network) is prolonged. At the beginning of each round, the base station transmits a synchronization signal that contains information on the priority table that is used to decide whether each sensor node is elected as a cluster head or not. The priority table is constructed so that sensor nodes closer to half energy distance from the base station get the higher priority. 2-hop routing is done as follows. Cluster heads inside half energy distance from the base station communicate with the base station directly. Those outside half energy distance have to decide whether they choose 2-hop routing or 1-hop routing. To do this, each cluster head outside half energy distance calculates the energy consumption needed to communicate with the base station via 1-level cluster head or directly. If less energy is needed when passing through the 1-level cluster head, 2-hop routing is chosen and if not, 1-hop routing is chosen. After routing is done each sensor nodes start sensing data.

SOM-Based $R^{*}-Tree$ for Similarity Retrieval (자기 조직화 맵 기반 유사 검색 시스템)

  • O, Chang-Yun;Im, Dong-Ju;O, Gun-Seok;Bae, Sang-Hyeon
    • The KIPS Transactions:PartD
    • /
    • v.8D no.5
    • /
    • pp.507-512
    • /
    • 2001
  • Feature-based similarity has become an important research issue in multimedia database systems. The features of multimedia data are useful for discriminating between multimedia objects. the performance of conventional multidimensional data structures tends to deteriorate as the number of dimensions of feature vectors increase. The $R^{*}-Tree$ is the most successful variant of the R-Tree. In this paper, we propose a SOM-based $R^{*}-Tree$ as a new indexing method for high-dimensional feature vectors. The SOM-based $R^{*}-Tree$ combines SOM and $R^{*}-Tree$ to achieve search performance more scalable to high-dimensionalties. Self-Organizingf Maps (SOMs) provide mapping from high-dimensional feature vectors onto a two-dimensional space. The map is called a topological feature map, and preserves the mutual relationships (similarity) in the feature spaces of input data, clustering mutually similar feature vectors in neighboring nodes. Each node of the topological feature map holds a codebook vector. We experimentally compare the retrieval time cost of a SOM-based $R^{*}-Tree$ with of an SOM and $R^{*}-Tree$ using color feature vectors extracted from 40,000 images. The results show that the SOM-based $R^{*}-Tree$ outperform both the SOM and $R^{*}-Tree$ due to reduction of the number of nodes to build $R^{*}-Tree$ and retrieval time cost.

  • PDF

The Need for Paradigm Shift in Semantic Similarity and Semantic Relatedness : From Cognitive Semantics Perspective (의미간의 유사도 연구의 패러다임 변화의 필요성-인지 의미론적 관점에서의 고찰)

  • Choi, Youngseok;Park, Jinsoo
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.1
    • /
    • pp.111-123
    • /
    • 2013
  • Semantic similarity/relatedness measure between two concepts plays an important role in research on system integration and database integration. Moreover, current research on keyword recommendation or tag clustering strongly depends on this kind of semantic measure. For this reason, many researchers in various fields including computer science and computational linguistics have tried to improve methods to calculating semantic similarity/relatedness measure. This study of similarity between concepts is meant to discover how a computational process can model the action of a human to determine the relationship between two concepts. Most research on calculating semantic similarity usually uses ready-made reference knowledge such as semantic network and dictionary to measure concept similarity. The topological method is used to calculated relatedness or similarity between concepts based on various forms of a semantic network including a hierarchical taxonomy. This approach assumes that the semantic network reflects the human knowledge well. The nodes in a network represent concepts, and way to measure the conceptual similarity between two nodes are also regarded as ways to determine the conceptual similarity of two words(i.e,. two nodes in a network). Topological method can be categorized as node-based or edge-based, which are also called the information content approach and the conceptual distance approach, respectively. The node-based approach is used to calculate similarity between concepts based on how much information the two concepts share in terms of a semantic network or taxonomy while edge-based approach estimates the distance between the nodes that correspond to the concepts being compared. Both of two approaches have assumed that the semantic network is static. That means topological approach has not considered the change of semantic relation between concepts in semantic network. However, as information communication technologies make advantage in sharing knowledge among people, semantic relation between concepts in semantic network may change. To explain the change in semantic relation, we adopt the cognitive semantics. The basic assumption of cognitive semantics is that humans judge the semantic relation based on their cognition and understanding of concepts. This cognition and understanding is called 'World Knowledge.' World knowledge can be categorized as personal knowledge and cultural knowledge. Personal knowledge means the knowledge from personal experience. Everyone can have different Personal Knowledge of same concept. Cultural Knowledge is the knowledge shared by people who are living in the same culture or using the same language. People in the same culture have common understanding of specific concepts. Cultural knowledge can be the starting point of discussion about the change of semantic relation. If the culture shared by people changes for some reasons, the human's cultural knowledge may also change. Today's society and culture are changing at a past face, and the change of cultural knowledge is not negligible issues in the research on semantic relationship between concepts. In this paper, we propose the future directions of research on semantic similarity. In other words, we discuss that how the research on semantic similarity can reflect the change of semantic relation caused by the change of cultural knowledge. We suggest three direction of future research on semantic similarity. First, the research should include the versioning and update methodology for semantic network. Second, semantic network which is dynamically generated can be used for the calculation of semantic similarity between concepts. If the researcher can develop the methodology to extract the semantic network from given knowledge base in real time, this approach can solve many problems related to the change of semantic relation. Third, the statistical approach based on corpus analysis can be an alternative for the method using semantic network. We believe that these proposed research direction can be the milestone of the research on semantic relation.

Gunnery Classification Method Using Profile Feature Extraction in Infrared Images (적외선 영상에서의 시계열 특징 추출을 이용한 Gunnery 분류 기법 연구)

  • Kim, Jae-Hyup;Cho, Tae-Wook;Chun, Seung-Woo;Lee, Jong-Min;Moon, Young-Shik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.10
    • /
    • pp.43-53
    • /
    • 2014
  • Gunnery has been used to detect and classify artilleries. In this paper, we used electro-optical data to get the information of muzzle flash from the artilleries. Feature based approach was applied; we first defined features and sub-features. The number of sub-features was 38~40 generic sub-features, and 2 model-based sub-features. To classify multiclass data, we introduced tree structure with clustering the classes according to the similarity of them. SVM was used for each non-leaf nodes in the tree, as a sub-classifier. From the data, we extracted features and sub-features and classified them by the tree structure SVM classifier. The results showed that the performance of our classifier was good for our muzzle flash classification problem.

A Study on Genetically Optimized Fuzzy Set-based Polynomial Neural Networks (진화이론을 이용한 최적화 Fuzzy Set-based Polynomial Neural Networks에 관한 연구)

  • Rho, Seok-Beom;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.346-348
    • /
    • 2004
  • In this rarer, we introduce a new Fuzzy Polynomial Neural Networks (FPNNs)-like structure whose neuron is based on the Fuzzy Set-based Fuzzy Inference System (FS-FIS) and is different from that of FPNNs based on the Fuzzy relation-based Fuzzy Inference System (FR-FIS) and discuss the ability of the new FPNNs-like structurenamed Fuzzy Set-based Polynomial Neural Networks (FSPNN). The premise parts of their fuzzy rules are not identical, while the consequent parts of the both Networks (such as FPNN and FSPNN) are identical. This difference results from the angle of a viewpoint of partition of input space of system. In other word, from a point of view of FS-FIS, the input variables are mutually independent under input space of system, while from a viewpoint of FR-FIS they are related each other. In considering the structures of FPNN-like networks such as FPNN and FSPNN, they are almost similar. Therefore they have the same shortcomings as well as the same virtues on structural side. The proposed design procedure for networks' architecture involves the selection of appropriate nodes with specific local characteristics such as the number of input variables, the order of the polynomial that is constant, linear, quadratic, or modified quadratic functions being viewed as the consequent part of fuzzy rules, and a collection of the specific subset of input variables. On the parameter optimization phase, we adopt Information Granulation (IG) based on HCM clustering algorithm and a standard least square method-based learning. Through the consecutive process of such structural and parametric optimization, an optimized and flexible fuzzy neural network is generated in a dynamic fashion. To evaluate the performance of the genetically optimized FSPNN (gFSPNN), the model is experimented with using gas furnace process dataset.

  • PDF