• Title/Summary/Keyword: Nodes Clustering

Search Result 464, Processing Time 0.028 seconds

Community Discovery in Weighted Networks Based on the Similarity of Common Neighbors

  • Liu, Miaomiao;Guo, Jingfeng;Chen, Jing
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1055-1067
    • /
    • 2019
  • In view of the deficiencies of existing weighted similarity indexes, a hierarchical clustering method initialize-expand-merge (IEM) is proposed based on the similarity of common neighbors for community discovery in weighted networks. Firstly, the similarity of the node pair is defined based on the attributes of their common neighbors. Secondly, the most closely related nodes are fast clustered according to their similarity to form initial communities and expand the communities. Finally, communities are merged through maximizing the modularity so as to optimize division results. Experiments are carried out on many weighted networks, which have verified the effectiveness of the proposed algorithm. And results show that IEM is superior to weighted common neighbor (CN), weighted Adamic-Adar (AA) and weighted resources allocation (RA) when using the weighted modularity as evaluation index. Moreover, the proposed algorithm can achieve more reasonable community division for weighted networks compared with cluster-recluster-merge-algorithm (CRMA) algorithm.

Channel Selection Technique Considering Energy Efficiency in Routing Algorithms of the Sensor Network (센서네트워크의 라우팅 프로토콜에서 에너지 효율을 고려한 채널 선택 기법)

  • Subedi, Sagun;Lee, Sang-Il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.5
    • /
    • pp.662-665
    • /
    • 2020
  • Energy Efficiency in any WSN (Wireless Sensor Network) is a critical issue to elongate the life of the batteries equipped in sensors. LEACH(Low Energy Adaptive Clustering Hierarchy) is one of the mostly used routing algorithms which reduce the amount of transmitted data and save the energy in the network. In this paper, a new technique to select channels in routing algorithms is suggested and compared with the LEACH, ALEACH and PEGASIS. This technique forms clusters depending upon the node density as the deployement of the nodes is random. As a result, the proposed algorithm presents the better performance of the energy efficiency than those of the current algorithms.

A Novel Improved Energy-Efficient Cluster Based Routing Protocol (IECRP) for Wireless Sensor Networks

  • Inam, Muhammad;Li, Zhuo;Zardari, Zulfiqar Ali
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.2
    • /
    • pp.67-72
    • /
    • 2021
  • Wireless sensor networks (WSNs) require an enormous number of sensor nodes (SNs) to maintain processing, sensing, and communication capabilities for monitoring targeted sensing regions. SNs are generally operated by batteries and have a significantly restricted energy consumption; therefore, it is necessary to discover optimization techniques to enhance network lifetime by saving energy. The principal focus is on reducing the energy consumption of packet sharing (transmission and receiving) and improving the network lifespan. To achieve this objective, this paper presents a novel improved energy-efficient cluster-based routing protocol (IECRP) that aims to accomplish this by decreasing the energy consumption in data forwarding and receiving using a clustering technique. Doing so, we successfully increase node energy and network lifetime. In order to confirm the improvement of our algorithm, a simulation is done using matlab, in which analysis and simulation results show that the performance of the proposed algorithm is better than that of two well-known recent benchmarks.

Performance Improvement of Fuzzy C-Means Clustering Algorithm by Optimized Early Stopping for Inhomogeneous Datasets

  • Chae-Rim Han;Sun-Jin Lee;Il-Gu Lee
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.3
    • /
    • pp.198-207
    • /
    • 2023
  • Responding to changes in artificial intelligence models and the data environment is crucial for increasing data-learning accuracy and inference stability of industrial applications. A learning model that is overfitted to specific training data leads to poor learning performance and a deterioration in flexibility. Therefore, an early stopping technique is used to stop learning at an appropriate time. However, this technique does not consider the homogeneity and independence of the data collected by heterogeneous nodes in a differential network environment, thus resulting in low learning accuracy and degradation of system performance. In this study, the generalization performance of neural networks is maximized, whereas the effect of the homogeneity of datasets is minimized by achieving an accuracy of 99.7%. This corresponds to a decrease in delay time by a factor of 2.33 and improvement in performance by a factor of 2.5 compared with the conventional method.

An Efficient Core-Based Multicast Tree using Weighted Clustering in Ad-hoc Networks (애드혹 네트워크에서 가중치 클러스터링을 이용한 효율적인 코어-기반 멀티캐스트 트리)

  • Park, Yang-Jae;Han, Seung-Jin;Lee, Jung-Hyun
    • The KIPS Transactions:PartC
    • /
    • v.10C no.3
    • /
    • pp.377-386
    • /
    • 2003
  • This study suggested a technique to maintain an efficient core-based multicast tree using weighted clustering factors in mobile Ad-hoc networks. The biggest problem with the core-based multicast tree routing is to decide the position of core node. The distance of data transmission varies depending on the position of core node. The overhead's effect on the entire network is great according to the recomposition of the multicast tree due to the movement of core node, clustering is used. A core node from cluster head nodes on the multicast tree within core area whose weighted factor is the least is chosen as the head core node. Way that compose multicast tree by weighted clustering factors thus and propose keeping could know that transmission distance and control overhead according to position andmobility of core node improve than existent multicast way, and when select core node, mobility is less, and is near in center of network multicast tree could verification by simulation stabilizing that transmission distance is short.

Finding Genes Discriminating Smokers from Non-smokers by Applying a Growing Self-organizing Clustering Method to Large Airway Epithelium Cell Microarray Data

  • Shahdoust, Maryam;Hajizadeh, Ebrahim;Mozdarani, Hossein;Chehrei, Ali
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.1
    • /
    • pp.111-116
    • /
    • 2013
  • Background: Cigarette smoking is the major risk factor for development of lung cancer. Identification of effects of tobacco on airway gene expression may provide insight into the causes. This research aimed to compare gene expression of large airway epithelium cells in normal smokers (n=13) and non-smokers (n=9) in order to find genes which discriminate the two groups and assess cigarette smoking effects on large airway epithelium cells.Materials and Methods: Genes discriminating smokers from non-smokers were identified by applying a neural network clustering method, growing self-organizing maps (GSOM), to microarray data according to class discrimination scores. An index was computed based on differentiation between each mean of gene expression in the two groups. This clustering approach provided the possibility of comparing thousands of genes simultaneously. Results: The applied approach compared the mean of 7,129 genes in smokers and non-smokers simultaneously and classified the genes of large airway epithelium cells which had differently expressed in smokers comparing with non-smokers. Seven genes were identified which had the highest different expression in smokers compared with the non-smokers group: NQO1, H19, ALDH3A1, AKR1C1, ABHD2, GPX2 and ADH7. Most (NQO1, ALDH3A1, AKR1C1, H19 and GPX2) are known to be clinically notable in lung cancer studies. Furthermore, statistical discriminate analysis showed that these genes could classify samples in smokers and non-smokers correctly with 100% accuracy. With the performed GSOM map, other nodes with high average discriminate scores included genes with alterations strongly related to the lung cancer such as AKR1C3, CYP1B1, UCHL1 and AKR1B10. Conclusions: This clustering by comparing expression of thousands of genes at the same time revealed alteration in normal smokers. Most of the identified genes were strongly relevant to lung cancer in the existing literature. The genes may be utilized to identify smokers with increased risk for lung cancer. A large sample study is now recommended to determine relations between the genes ABHD2 and ADH7 and smoking.

IDS Model using Improved Bayesian Network to improve the Intrusion Detection Rate (베이지안 네트워크 개선을 통한 탐지율 향상의 IDS 모델)

  • Choi, Bomin;Lee, Jungsik;Han, Myung-Mook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.495-503
    • /
    • 2014
  • In recent days, a study of the intrusion detection system collecting and analyzing network data, packet or logs, has been actively performed to response the network threats in computer security fields. In particular, Bayesian network has advantage of the inference functionality which can infer with only some of provided data, so studies of the intrusion system based on Bayesian network have been conducted in the prior. However, there were some limitations to calculate high detection performance because it didn't consider the problems as like complexity of the relation among network packets or continuos input data processing. Therefore, in this paper we proposed two methodologies based on K-menas clustering to improve detection rate by reforming the problems of prior models. At first, it can be improved by sophisticatedly setting interval range of nodes based on K-means clustering. And for the second, it can be improved by calculating robust CPT through applying weighted-leaning based on K-means clustering, too. We conducted the experiments to prove performance of our proposed methodologies by comparing K_WTAN_EM applied to proposed two methodologies with prior models. As the results of experiment, the detection rate of proposed model is higher about 7.78% than existing NBN(Naive Bayesian Network) IDS model, and is higher about 5.24% than TAN(Tree Augmented Bayesian Network) IDS mode and then we could prove excellence our proposing ideas.

A Dual Processing Load Shedding to Improve The Accuracy of Aggregate Queries on Clustering Environment of GeoSensor Data Stream (클러스터 환경에서 GeoSensor 스트림 데이터의 집계질의의 정확도 향상을 위한 이중처리 부하제한 기법)

  • Ji, Min-Sub;Lee, Yeon;Kim, Gyeong-Bae;Bae, Hae-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.1
    • /
    • pp.31-40
    • /
    • 2012
  • u-GIS DSMSs have been researched to deal with various sensor data from GeoSensors in ubiquitous environment. Also, they has been more important for high availability. The data from GeoSensors have some characteristics that increase explosively. This characteristic could lead memory overflow and data loss. To solve the problem, various load shedding methods have been researched. Traditional methods drop the overloaded tuples according to a particular criteria in a single server. Tuple deletion sensitive queries such as aggregation is hard to satisfy accuracy. In this paper a dual processing load shedding method is suggested to improve the accuracy of aggregation in clustering environment. In this method two nodes use replicated stream data for high availability. They process a stream in two nodes by using a characteristic they share stream data. Stream data are synchronized between them with a window as a unit. Then, processed results are merged. We gain improved query accuracy without data loss.

Analysis on Scalability of Proactive Routing Protocols in Mobile Ad Hoc Networks (Ad Hoc 네트워크에서 테이블 기반 라우팅 프로토콜의 확장성 분석)

  • Yun, Seok-Yeol;Oh, Hoon
    • The KIPS Transactions:PartC
    • /
    • v.14C no.2
    • /
    • pp.147-154
    • /
    • 2007
  • Network topology in ad hoc networks keeps changing because of node mobility and no limitation in number of nodes. Therefore, the scalability of routing protocol is of great importance, However, table driven protocols such as DSDV have been known to be suitable for relatively small number of nodes and low node mobility, Various protocols like FSR, OLSR, and PCDV have been proposed to resolve scalability problem but vet remain to be proven for their comparative superiority for scalability, In this paper, we compare and amine them by employing various network deployment scenarios as follows: network dimension increase's while keeping node density constant node density increases while keeping network dimension fixed, and the number of sessions increase with the network dimension and the number of nodes fixed. the DSDV protocol showed a low scalability despite that it imposes a low overhead because its convergence speed against topology change is slow, The FSR's performance decreased according to the increase of overhead corresponding to increasing number of nodes, The OLSR with the shortest convergence time among them shows a good scalability, but turned out to be less scalable than the PCDV that uses a clustering because of its relatively high overhead.

On Generating Backbone Based on Energy and Connectivity for WSNs (무선 센서네트워크에서 노드의 에너지와 연결성을 고려한 클러스터 기반의 백본 생성 알고리즘)

  • Shin, In-Young;Kim, Moon-Seong;Choo, Hyun-Seung
    • Journal of Internet Computing and Services
    • /
    • v.10 no.5
    • /
    • pp.41-47
    • /
    • 2009
  • Routing through a backbone, which is responsible for performing and managing multipoint communication, reduces the communication overhead and overall energy consumption in wireless sensor networks. However, the backbone nodes will need extra functionality and therefore consume more energy compared to the other nodes. The power consumption imbalance among sensor nodes may cause a network partition and failures where the transmission from some sensors to the sink node could be blocked. Hence optimal construction of the backbone is one of the pivotal problems in sensor network applications and can drastically affect the network's communication energy dissipation. In this paper a distributed algorithm is proposed to generate backbone trees through robust multi-hop clusters in wireless sensor networks. The main objective is to form a properly designed backbone through multi-hop clusters by considering energy level and degree of each node. Our improved cluster head selection method ensures that energy is consumed evenly among the nodes in the network, thereby increasing the network lifetime. Comprehensive computer simulations have indicated that the newly proposed scheme gives approximately 10.36% and 24.05% improvements in the performances related to the residual energy level and the degree of the cluster heads respectively and also prolongs the network lifetime.

  • PDF