• Title/Summary/Keyword: Nodes Clustering

Search Result 464, Processing Time 0.025 seconds

Incremental Conceptual Clustering Using Modified Category Utility (변형된 Category Utility를 이용한 점진 개념학습)

  • Kim Pyo Jae;Choi Jin Young
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.193-197
    • /
    • 2005
  • 점진적 개념 학습 알고리즘인 COBWEB은 클래스 정보가 주어지지 않은 사례들(instances)을 분류하기 위하여 사례의 속성과 값에 근거하여 학습하며 각 노드가 유사한 사례들의 집합인 클래스에 해당하는 분류 트리를 생성하는 알고리즘이다. 유사한 사례들을 같은 클래스로 분류하기 위한 기준으로 category utility가 사용되며 이는 클래스 내부의 유사도와 클래스간의 차이점을 최대화하는 방향으로 클래스를 분류한다 기존의 COBWEB에 사용되는 category utility는 클래스 사이즈와 예측 정확성 사이의 tradeoff 관계로 볼 수 있으며, 이로 인하여 예측 정확성은 약간 감소하나 클래스 사이즈가 커지는 방향으로 학습이 진행 될 수 있는 편향성(bias)를 가지고 있다. 이는 분류 트리에 불필요한 클래스 노드들(spurious nodes)을 생성하게 하여 학습 결과인 클래스 개념을 이해하는뎨 어렵게 한다. 본 논문에서는 클래스와 그에 속하는 사례들의 속성-값 분포를 고려하여 클래스와 속성의 연관성에 비례한 가충치를 더한 변형된 category utility를 제안하고, dataset에 대한 실험을 통하여 제안된 category utility가 기존의 큰 클래스 사이즈를 선호하는 bias를 완화시킴을 보이고자 한다.

  • PDF

An Energy-efficient Clustering Algorithm using the Guaranteed Minimum Coverage for ClusterHeads in Wireless Sensor Networks (무선 센서 네트워크에서의 에너지 효율을 위한 클러스터 헤더 재배치 알고리즘)

  • Kim, Nam-Hun;Park, Tae-Rim;Kwon, Wook-Hyun;Kim, Jeong-Jun;Kim, Yong-Ho;Sin, Yeong-Hui
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2005.08a
    • /
    • pp.349-357
    • /
    • 2005
  • In this paper, a new clustering algorithm using the Guaranteed Minimum Coverage (GMC) is proposed. In the new protocol, an appropriate distribution of clusterheads is accomplished by guaranteeing a stochastic coverage at each clusterhead(CH)s. Using this protocol, the communication cost from clusterheads to their member nodes and the load variance in each clusterheads are reduced. Therefore, the network lifetime can be extended and the fair energy consumption for all CHs can be achieved

  • PDF

Data Transfer Method Using Relay Node in Hierarchical Mobile Wireless Sensor Network (계층구조 모바일 무선 센서 네트워크에서 중계 노드를 이용한 데이터전송 기법)

  • Kim, Yong;Lee, Doo-Wan;Jang, Kyung-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.894-896
    • /
    • 2010
  • In mobile wireless sensor network, Whole nodes can move. In mobile wireless sensor network based on clustering, there can be frequent re-configuration of cluster according to frequent changes of location. Frequent reconfiguration of the cluster cause a lot of power consumption and data loss. To solve this problem, we suggest relay method for sending reliable data and decreases a number of re-configuration of cluster using relay node.

  • PDF

Self-Organized Hierarchy Tree Protocol for Energy-Efficiency in Wireless Sensor Networks

  • THALJAOUI, Adel
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.230-238
    • /
    • 2021
  • A sensor network is made up of many sensors deployed in different areas to be monitored. They communicate with each other through a wireless medium. The routing of collected data in the wireless network consumes most of the energy of the network. In the literature, several routing approaches have been proposed to conserve the energy at the sensor level and overcome the challenges inherent in its limitations. In this paper, we propose a new low-energy routing protocol for power grids sensors based on an unsupervised clustering approach. Our protocol equitably harnesses the energy of the selected cluster-head nodes and conserves the energy dissipated when routing the captured data at the Base Station (BS). The simulation results show that our protocol reduces the energy dissipation and prolongs the network lifetime.

Reinforcement learning multi-agent using unsupervised learning in a distributed cloud environment

  • Gu, Seo-Yeon;Moon, Seok-Jae;Park, Byung-Joon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.192-198
    • /
    • 2022
  • Companies are building and utilizing their own data analysis systems according to business characteristics in the distributed cloud. However, as businesses and data types become more complex and diverse, the demand for more efficient analytics has increased. In response to these demands, in this paper, we propose an unsupervised learning-based data analysis agent to which reinforcement learning is applied for effective data analysis. The proposal agent consists of reinforcement learning processing manager and unsupervised learning manager modules. These two modules configure an agent with k-means clustering on multiple nodes and then perform distributed training on multiple data sets. This enables data analysis in a relatively short time compared to conventional systems that perform analysis of large-scale data in one batch.

A holistic distributed clustering algorithm based on sensor network (센서 네트워크 기반의 홀리스틱 분산 클러스터링 알고리즘)

  • Chen Ping;Kee-Wook Rim;Nam Ji-Yeun;Lee KyungOh
    • Annual Conference of KIPS
    • /
    • 2008.11a
    • /
    • pp.874-877
    • /
    • 2008
  • Nowadays the existing data processing systems can only support some simple query for sensor network. It is increasingly important to process the vast data streams in sensor network, and achieve effective acknowledges for users. In this paper, we propose a holistic distributed k-means algorithm for sensor network. In order to verify the effectiveness of this method, we compare it with central k-means algorithm to process the data streams in sensor network. From the evaluation experiments, we can verify that the proposed algorithm is highly capable of processing vast data stream with less computation time. This algorithm prefers to cluster the data streams at the distributed nodes, and therefore it largely reduces redundant data communications compared to the central processing algorithm.

Impact of Sink Node Location in Sensor Networks: Performance Evaluation (센서 네트워크에서 싱크 노드 위치가 성능에 미치는 영향 분석)

  • Choi, Dongmin;Kim, Seongyeol;Chung, Ilyong
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.8
    • /
    • pp.977-987
    • /
    • 2014
  • Many of the recent performance evaluation of clustering schemes in wireless sensor networks considered one sink node operation and fixed sink node location without mentioning about any network application requirements. However, application environments have variable requirements about their networks. In addition, network performance is sufficiently influenced by different sink node location scenarios in multi-hop based network. We also know that sink location can influence to the sensor network performance evaluation because of changed multipath of sensor nodes and changed overload spots in multipath based wireless sensor network environment. Thus, the performance evaluation results are hard to trust because sensor network is easily changed their network connection through their routing algorithms. Therefore, we suggest that these schemes need to evaluate with different sink node location scenarios to show fair evaluation result. Under the results of that, network performance evaluation results are acknowledged by researchers. In this paper, we measured several clustering scheme's performance variations in accordance with various types of sink node location scenarios. As a result, in the case of the clustering scheme that did not consider various types of sink location scenarios, fair evaluation cannot be expected.

A many-objective optimization WSN energy balance model

  • Wu, Di;Geng, Shaojin;Cai, Xingjuan;Zhang, Guoyou;Xue, Fei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.514-537
    • /
    • 2020
  • Wireless sensor network (WSN) is a distributed network composed of many sensory nodes. It is precisely due to the clustering unevenness and cluster head election randomness that the energy consumption of WSN is excessive. Therefore, a many-objective optimization WSN energy balance model is proposed for the first time in the clustering stage of LEACH protocol. The four objective is considered that the cluster distance, the sink node distance, the overall energy consumption of the network and the network energy consumption balance to select the cluster head, which to better balance the energy consumption of the WSN network and extend the network lifetime. A many-objective optimization algorithm to optimize the model (LEACH-ABF) is designed, which combines adaptive balanced function strategy with penalty-based boundary selection intersection strategy to optimize the clustering method of LEACH. The experimental results show that LEACH-ABF can balance network energy consumption effectively and extend the network lifetime when compared with other algorithms.

Research on Low-energy Adaptive Clustering Hierarchy Protocol based on Multi-objective Coupling Algorithm

  • Li, Wuzhao;Wang, Yechuang;Sun, Youqiang;Mao, Jie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1437-1459
    • /
    • 2020
  • Wireless Sensor Networks (WSN) is a distributed Sensor network whose terminals are sensors that can sense and check the environment. Sensors are typically battery-powered and deployed in where the batteries are difficult to replace. Therefore, maximize the consumption of node energy and extend the network's life cycle are the problems that must to face. Low-energy adaptive clustering hierarchy (LEACH) protocol is an adaptive clustering topology algorithm, which can make the nodes in the network consume energy in a relatively balanced way and prolong the network lifetime. In this paper, the novel multi-objective LEACH protocol is proposed, in order to solve the proposed protocol, we design a multi-objective coupling algorithm based on bat algorithm (BA), glowworm swarm optimization algorithm (GSO) and bacterial foraging optimization algorithm (BFO). The advantages of BA, GSO and BFO are inherited in the multi-objective coupling algorithm (MBGF), which is tested on ZDT and SCH benchmarks, the results are shown the MBGF is superior. Then the multi-objective coupling algorithm is applied in the multi-objective LEACH protocol, experimental results show that the multi-objective LEACH protocol can greatly reduce the energy consumption of the node and prolong the network life cycle.

Energy Efficient Cooperative LEACH Protocol for Wireless Sensor Networks

  • Asaduzzaman, Asaduzzaman;Kong, Hyung-Yun
    • Journal of Communications and Networks
    • /
    • v.12 no.4
    • /
    • pp.358-365
    • /
    • 2010
  • We develop a low complexity cooperative diversity protocol for low energy adaptive clustering hierarchy (LEACH) based wireless sensor networks. A cross layer approach is used to obtain spatial diversity in the physical layer. In this paper, a simple modification in clustering algorithm of the LEACH protocol is proposed to exploit virtual multiple-input multiple-output (MIMO) based user cooperation. In lieu of selecting a single cluster-head at network layer, we proposed M cluster-heads in each cluster to obtain a diversity order of M in long distance communication. Due to the broadcast nature of wireless transmission, cluster-heads are able to receive data from sensor nodes at the same time. This fact ensures the synchronization required to implement a virtual MIMO based space time block code (STBC) in cluster-head to sink node transmission. An analytical method to evaluate the energy consumption based on BER curve is presented. Analysis and simulation results show that proposed cooperative LEACH protocol can save a huge amount of energy over LEACH protocol with same data rate, bit error rate, delay and bandwidth requirements. Moreover, this proposal can achieve higher order diversity with improved spectral efficiency compared to other virtual MIMO based protocols.