• Title/Summary/Keyword: Node-Red

Search Result 72, Processing Time 0.018 seconds

Spectral Band Selection for Detecting Fire Blight Disease in Pear Trees by Narrowband Hyperspectral Imagery (초분광 이미지를 이용한 배나무 화상병에 대한 최적 분광 밴드 선정)

  • Kang, Ye-Seong;Park, Jun-Woo;Jang, Si-Hyeong;Song, Hye-Young;Kang, Kyung-Suk;Ryu, Chan-Seok;Kim, Seong-Heon;Jun, Sae-Rom;Kang, Tae-Hwan;Kim, Gul-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.1
    • /
    • pp.15-33
    • /
    • 2021
  • In this study, the possibility of discriminating Fire blight (FB) infection tested using the hyperspectral imagery. The reflectance of healthy and infected leaves and branches was acquired with 5 nm of full width at high maximum (FWHM) and then it was standardized to 10 nm, 25 nm, 50 nm, and 80 nm of FWHM. The standardized samples were divided into training and test sets at ratios of 7:3, 5:5 and 3:7 to find the optimal bands of FWHM by the decision tree analysis. Classification accuracy was evaluated using overall accuracy (OA) and kappa coefficient (KC). The hyperspectral reflectance of infected leaves and branches was significantly lower than those of healthy green, red-edge (RE) and near infrared (NIR) regions. The bands selected for the first node were generally 750 and 800 nm; these were used to identify the infection of leaves and branches, respectively. The accuracy of the classifier was higher in the 7:3 ratio. Four bands with 50 nm of FWHM (450, 650, 750, and 950 nm) might be reasonable because the difference in the recalculated accuracy between 8 bands with 10 nm of FWHM (440, 580, 640, 660, 680, 710, 730, and 740 nm) and 4 bands was only 1.8% for OA and 4.1% for KC, respectively. Finally, adding two bands (550 nm and 800 nm with 25 nm of FWHM) in four bands with 50 nm of FWHM have been proposed to improve the usability of multispectral image sensors with performing various roles in agriculture as well as detecting FB with other combinations of spectral bands.

$HgCl_2$ Dysregulates the Immune Response of Balb/c Mice (수은에 의한 마우스의 면역반응 조절장애)

  • Ki, No-Suk;Koh, Dai-Ha;Kim, Chong-Suh;Lee, Jung-Sang;Kim, Nam-Song;Lee, Hwang-Ho
    • Journal of Preventive Medicine and Public Health
    • /
    • v.27 no.1 s.45
    • /
    • pp.11-24
    • /
    • 1994
  • The studies reported here were undertaken to investigate the effects of mercury chloride on immune system of Balb/c mouse employing a flexible tier of in vitro and in vivo assays. Mercury chloride inhibited the proliferative responses of spleen cells to lipopolysaccharide, pokeweed mitogen, and phytohemagglutinin as a dose-dependent manner. This inhibitory effect was observed not only when $HgCl_2$ was added 2nd or 3rd day of 3 days culture period but also when spleen cells was pretreated with $HgCl_2$ for 2 hours. Mercury chloride, however, potentiated the production of IgM and IgG from spleen cells. During the $HgCl_2$ administration by drinking for 3 weeks, the weight gain of mice was significantly blunted than that o control group mice, while no overt signs related to mercury toxicity were noted in any mice of experimental group. There was no change in thymus and spleen weights, and in histological findings of kidney, bone marrow of femur, thymus, spleen, and popliteal lymph node after 3 weeks of mercury exposure. However, $HgCl_2$ induced a significant increase of total serum IgM, IgG including $IgG_1,\;IgG_{2a}\;and\;IgG_{2b}$, and IgE in Balb/c mice. Treatment in vivo with anti-IL-4 monoclonal antibody significantly abrogated the $HgCl_2$-induced increase in total serum IgG1 and IgE. Whereas $HgCl_2$ potentiated total serum IgM and IgG, there was no difference in total serum hemagglutinin to SRBC (Sheep Red Blood Cell) between experimental and control group mice when these mice were immunized with SRBC. All these findings observed in Balb/c mice suggest that mercury perturbates well-orchestrated regulation of immune responses before developing histopathological changes in lymphoid tissues.

  • PDF