• Title/Summary/Keyword: Node reliability

Search Result 373, Processing Time 0.024 seconds

Adjacent Matrix-based Hole Coverage Discovery Technique for Sensor Networks

  • Wu, Mary
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.4
    • /
    • pp.169-176
    • /
    • 2019
  • Wireless sensor networks are used to monitor and control areas in a variety of military and civilian areas such as battlefield surveillance, intrusion detection, disaster recovery, biological detection, and environmental monitoring. Since the sensor nodes are randomly placed in the area of interest, separation of the sensor network area may occur due to environmental obstacles or a sensor may not exist in some areas. Also, in the situation where the sensor node is placed in a non-relocatable place, some node may exhaust energy or physical hole of the sensor node may cause coverage hole. Coverage holes can affect the performance of the entire sensor network, such as reducing data reliability, changing network topologies, disconnecting data links, and degrading transmission load. It is possible to solve the problem that occurs in the coverage hole by finding a coverage hole in the sensor network and further arranging a new sensor node in the detected coverage hole. The existing coverage hole detection technique is based on the location of the sensor node, but it is inefficient to mount the GPS on the sensor node having limited resources, and performing other location information processing causes a lot of message transmission overhead. In this paper, we propose an Adjacent Matrix-based Hole Coverage Discovery(AMHCD) scheme based on connectivity of neighboring nodes. The method searches for whether the connectivity of the neighboring nodes constitutes a closed shape based on the adjacent matrix, and determines whether the node is an internal node or a boundary node. Therefore, the message overhead for the location information strokes does not occur and can be applied irrespective of the position information error.

A Dependability Modeling of Software Under Memory Faults for Digital System in Nuclear Power Plants

  • Park, Jong-Gyun;Seong, Poong-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.433-443
    • /
    • 1997
  • In this work, an analytic approach to the dependability of software in the operational phase is suggested with special attention to the hardware fault effects on the software behavior : The hardware faults considered are memory faults and the dependability measure in question is the reliability. The model is based on the simple reliability theory and the graph theory which represents the software with graph composed of nodes and arcs. Through proper transformation, the graph can be reduced to a simple two-node graph and the software reliability is derived from this graph. Using this model, we predict the reliability of an application software in the digital system (ILS) in the nuclear power plant and show the sensitivity of the software reliability to the major physical parameters which affect the software failure in the normal operation phase. We also found that the effects of the hardware faults on the software failure should be considered for predicting the software dependability accurately in operation phase, especially for the software which is executed frequently. This modeling method is particularly attractive for the medium size programs such as the microprocessor-based nuclear safety logic program.

  • PDF

Fixed Partitioning Methods for Extending lifetime of sensor node for Wireless Sensor Networks (WSN환경에서 센서노드의 생명주기 연장을 위한 고정 분할 기법)

  • Han, Chang-Su;Cho, Young-Bok;Woo, Sung-Hee;Lee, Sang-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.5
    • /
    • pp.942-948
    • /
    • 2016
  • WSN based on wireless sensor nodes, Sensor nodes can not be reassigned and recharged if they once placed. Each sensor node comes into being involved to a communication network with its limited energy. But the existing proposed clustering techniques, being applied to WSN environment with irregular dispersion of sensor nodes, have the network reliability issues which bring about a communication interruption with the local node feature of unbalanced distribution in WSN. Therefore, the communications participation of the sensor nodes in the suggested algorithm is extended by 25% as the sensor field divided in the light of the non-uniformed distribution of sensor nodes and a static or a dynamic clustering algorithm adopted according to its partition of sensor node density in WSN. And the entire network life cycle was extended by 14% to ensure the reliability of the network.

QoS-guaranteed Routing for Wireless Sensor Networks (무선 센서 네트워크를 위한 QoS 보장 라우팅)

  • Heo, Jun-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.6
    • /
    • pp.23-29
    • /
    • 2011
  • In some applications of wireless sensor networks, requirements such as energy efficiency, real-time, and reliable delivery need to be considered. In this paper, we propose a novel routing algorithm for wireless sensor networks. It provides real-time, reliable delivery of a packet, while considering energy awareness. In the proposed algorithm, a node estimates the energy cost, delay and reliability of a path to the sink node, based only on information from neighboring nodes. Then, it calculates the probability of selecting a path, using the estimates. When packet forwarding is required, it randomly selects the next node. A path with lower energy cost is likely to be selected, because the probability is inversely proportional to the energy cost to the sink node. To achieve real-time delivery, only paths that may deliver a packet in time are selected. To achieve reliability, it may send a redundant packet via an alternate path, but only if it is a source of a packet. Experimental results show that the proposed algorithm is suitable for providing energy efficient, real-time, reliable communications.

A Study for Video Data Acquisition and Alternate Node using Quadcopter in Disaster Detection System based on Wireless Sensor Networks (무선 센서 네트워크 기반의 재난재해 감지 시스템에서 쿼드콥터를 이용한 영상 데이터 수집 및 대체 노드에 관한 연구)

  • Jeong, Ji-Eun;Lee, Kang-whan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.493-495
    • /
    • 2016
  • In this paper, we propose an alternative method of collecting image data and changing nodes in wireless sensor networks based sensing disaster systems configured with zigbee using quad copter. It is difficult to observe a wide area caused by existing fixed video cameras in the wireless sensor network system using a conventional image-based. Also the nodes don't have provide to alternate methodology in situations when missing due to a disaster or destruction. In this paper, to use wearing the IP camera and the communication node to the quad copter, it provides a method to take advantage of as improving an alternative node of the reliability of the sensor node. The results show to improve the reliability of the sensor nodes and real-time status information through a video quad Copt than conventional systems.

  • PDF

Multiple Sink Nodes to Improve Performance in WSN

  • Dick, Mugerwa;Alwabel, Mohammed;Kwon, Youngmi
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.6
    • /
    • pp.676-683
    • /
    • 2019
  • Wireless Sensor Networks (WSNs) consist of multiple tiny and power constrained sensors which use radio frequencies to carry out sensing in a designated sensor area. To effectively design and implement reliable WSN, it is critical to consider models, protocols, and algorithms that can optimize energy consumption of all the sensor nodes with optimal amount of packet delivery. It has been observed that deploying a single sink node comes with numerous challenges especially in a situation with high node density and congestion. Sensor nodes close to a single sink node receive more transmission traffic load compared to other sensors, thus causing quick depletion of energy which finally leads to an energy hole and sink hole problems. In this paper, we proposed the use of multiple energy efficient sink nodes with brute force technique under optimized parameters to improve on the number of packets delivered within a given time. Simulation results not only depict that, deploying N sink nodes in a sensor area has a maximum limit to offer a justifiable improvement in terms of packet delivery ratio but also offers a reduction in End to End delay and reliability in case of failure of a single sink node, and an improvement in the network lifetime rather than deploying a single static sink node.

A Sensing Radius Intersection Based Coverage Hole Recovery Method in Wireless Sensor Network (센서 네트워크에서 센싱 반경 교차점 기반 홀 복구 기법)

  • Wu, Mary
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.3
    • /
    • pp.431-439
    • /
    • 2021
  • Since the sensor nodes are randomly arranged in the region of interest, it may happen that the sensor network area is separated or there is no sensor node in some area. In addition, after the sensor nodes are deployed in the sensor network, a coverage hole may occur due to the exhaustion of energy or physical destruction of the sensor nodes. The coverage hole can greatly affect the overall performance of the sensor network, such as reducing the data reliability of the sensor network, changing the network topology, disconnecting the data link, and worsening the transmission load. Therefore, sensor network coverage hole recovery has been studied. Existing coverage hole recovery studies present very complex geometric methods and procedures in the two-step process of finding a coverage hole and recovering a coverage hole. This study proposes a method for discovering and recovering a coverage hole in a sensor network, discovering that the sensor node is a boundary node by itself, and determining the location of a mobile node to be added. The proposed method is expected to have better efficiency in terms of complexity and message transmission compared to previous methods.

Comparison of error estimation methods and adaptivity for plane stress/strain problems

  • Ozakca, Mustafa
    • Structural Engineering and Mechanics
    • /
    • v.15 no.5
    • /
    • pp.579-608
    • /
    • 2003
  • This paper deals with adaptive finite element analysis of linearly elastic structures using different error estimators based on flux projection (or best guess stress values) and residual methods. Presentations are given on a typical h-type adaptive analysis, a mesh refinement scheme and the coupling of adaptive finite element analysis with automatic mesh generation. Details about different error estimators are provided and their performance, reliability and convergence are studied using six node quadratic triangular elements. Several examples are presented to demonstrate the reliability of different error estimators.

An Efficient Routing Algorithm Considering Packet Collisions in Cognitive Radio Ad-hoc Network (CR Ad-hoc Network에서 패킷 충돌을 고려한 효율적인 경로탐색 알고리즘)

  • Kim, Jin-Su;Choi, Jun-Ho;Shin, Myeong-Jin;Lee, Ji-Seon;Yoo, Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.9
    • /
    • pp.751-764
    • /
    • 2013
  • In cognitive radio ad-hoc networks, common control channel overload and packet collisions are occured due to indiscriminate broadcasting of control packets. So that the path reliability is reduced and control channel is easily saturated. In this paper, we propose a new routing algorithm considering the probability of appearance of primary user and channel status of neighbor nodes. When the source node needs to transmit a data packet to the destination, it performs route discovery process by exchanging control messages using a control channel in ADOV CR Ad-hoc networks. If any intermediate node doesn't have common data channel with previous node to transmit data, it doesn't rebroadcast control packet. And if it has common data channels with previous node, each node determines channel contribution factor with the number of common channels. Based on the channel contribution factor, each node performs different back-off broadcasting. In addition, each node controls control packet flooding by applying to proposed advanced mode using such as number of available channels and channel stability. With the proposed method, the number of control packets to find the data transmission path and the probability of collision among control packets can be decreased. While the path reliability can be increased. Through simulation, we show that our proposed algorithm reduces packet collisions in comparison with the traditional algorithm.

Crosstalk Glitch Elimination Algorithm for Functional Fault Avoidance (기능적 오류방지를 위한 크로스톡 글리치 제거 알고리즘)

  • Lee, Hyung-Woo;Kim, You-Bean;Kim, Ju-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.577-580
    • /
    • 2004
  • Our paper focus on crosstalk noise problem, especially crosstalk glitch that occurs when victim is stable state and aggressor is transitive state. This generated glitch weigh with the functional reliability if the glitch is considerable. In this paper, we use buffer insertion, down sizing, buffer insertion with up-sizing methods concurrently. These methodologies use filtering effects which gates that have bigger noise margin than glitch width eliminates glitch. In addition, we do limited optimization in boundary of node's slack. Therefore, the operated node's changes are for nothing in other node's slack.

  • PDF