• Title/Summary/Keyword: Node mission

Search Result 31, Processing Time 0.027 seconds

A study of continuous mission implement of sensor system (센서 시스템의 연속적인 임무 수행을 위한 연구)

  • Park, Sangjoon;Lee, Jongchan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.381-382
    • /
    • 2022
  • In this paper, we consider the sensor node system property for continuous mission implementation in dangerous area. In hazard area, a node cannot implement its mission anymore, next node should receive the mission. The next node arriving in dangerous area analyzes the property and function of previous node to prepare the possibility to continuous mission implementation.

  • PDF

A study of mission implement model in sensor networks (센서망에서 임무 수행 모델 연구)

  • Park, Sangjoon;Lee, Jongchan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.379-380
    • /
    • 2022
  • In this paper, we propose the model of sensor network group to implement mission of several hazard area. Especially it should be considered that the wireless system take the next mission method not to single mission but to sequence mission implement in group mission conduction. That is, not the completion by a node system, the implement property should be presented during transferring mission of next node.

  • PDF

Development of ROS-based Flight and Mission State Communication Node for X-Plane 11-based Flight Simulation Environment

  • Cho, Sungwook
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.4
    • /
    • pp.75-84
    • /
    • 2021
  • A novel robot-operating-system-based flight and mission state communication node for X-Plane 11 flight control simulation environments and its simulation results were discussed. Although the proposed communication method requires considerable implementation steps compared with the conventional MATLAB/Simulink-based User Datagram Protocol (UDP) block utilization method, the proposed method enables a direct comparison of cockpit-view images captured during flight with the flight data. This comparison is useful for data acquisition under virtual environments and for the development of flight control systems. The fixed/rotary-wing and ground terrain elements simulated in virtual environments exhibited excellent visualization outputs, which can overcome time and space constraints on flight experiments and validation of missionary algorithms with complex logic.

POST LAUNCH MISSION ANALYSIS FOR THE KOMPSAT-1

  • Lee, Byoung-Sun;Lee, Jeong-Sook;Kim, Jong-Ah
    • Journal of Astronomy and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.285-294
    • /
    • 2000
  • The post-launch mission analysis of the KOMPSAT-1 spacecraft was carried out. The injection accuracy of the Taurus launch vehicle was analyzed by comparison of the target and the realized orbit parameters. The tracking station contact analysis was also performed based on the state vectors applied at the day of launch. The offset angles between the predicted orbit and realized orbit were calculated for various tracking stations. The injection orbit parameters of the KOMPSAT-1 were analyzed for the possible options in Launch and Early Orbit Phase(LEOP) operations. Variations of the Local Time of Ascending Node(LTAN) were also obtained.

  • PDF

A management scheme of agent node in crowd group (군집 그룹에서 에이전트 노드 관리 방안)

  • Park, Sangjoon;Lee, Jongchan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.537-538
    • /
    • 2021
  • In this paper, we consider the agent management scheme for the data gathering in the crowd group. To the critical data gathered in dangerous region, the possibility of mission failure caused by the sensor node damage can be high. Hence, we study the node processing to the danger agent node through the cooperative network method for the sensor nodes.

  • PDF

A management scheme of departed network in the crowd group (군집 그룹에서 이탈 네트워크에 대한 관리 방안)

  • Park, Sangjoon;Lee, Jongchan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.541-542
    • /
    • 2021
  • In this paper, we consider the straggled network treatment in multiple sensor groups. During the moving or the implement of mission, the departed network should be handled. The loss of network group affects the mission implement of overall sensor networks, and it also requests the immediate treatment. In urgent mission environments, the network management of mobile sink should be considered to the group damage.

  • PDF

A Novel Optical High-Availability Seamless Redundancy (OHSR) Design Based on Beam Splitting / Combining Techniques

  • Altaha, Ibraheem Raed;Kim, Sung Chul;Rhee, Jong Myung
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.678-685
    • /
    • 2016
  • The standard high-availability seamless redundancy (HSR) protocol utilizes duplicated frame copies of each sent frame for zero fail over time. This means that even in cases of a node or link failure, the destination node will receive at least one copy of the sent frame, resulting in no network downtime. However, the standard HSR is mostly based on the electrical signal connection inside the node, which leads to the production of considerable latency at each node due to frame processing. Therefore, in a large scale HSR ring network, the accumulated latencies become significant and can often restrict the mission-critical real-time application of HSR. In this paper, we present a novel design for optical HSR (OHSR) that uses beam splitting/combining techniques. The proposed OHSR passes the frames directly to adjacent nodes without frame processing at each node, thereby theoretically generating no latency in any node. Various simulations for network samples, made to validate the OHSR design and its performance, show that the OHSR outperforms the standard HSR.

Biologically Inspired Node Scheduling Control for Wireless Sensor Networks

  • Byun, Heejung;Son, Sugook;Yang, Soomi
    • Journal of Communications and Networks
    • /
    • v.17 no.5
    • /
    • pp.506-516
    • /
    • 2015
  • Wireless sensor networks (WSNs) are generally comprised of densely deployed sensor nodes, which results in highly redundant sensor data transmissions and energy waste. Since the sensor nodes depend on batteries for energy, previous studies have focused on designing energy-efficient medium access control (MAC) protocols to extend the network lifetime. However, the energy-efficient protocols induce an extra end-to-end delay, and therefore recent increase in focus on WSNs has led to timely and reliable communication protocols for mission-critical applications. In this paper, we propose an energy efficient and delay guaranteeing node scheduling scheme inspired by biological systems, which have gained considerable attention as a computing and problem solving technique.With the identification of analogies between cellular signaling systems and WSN systems, we formulate a new mathematical model that considers the networking challenges of WSNs. The proposed bio-inspired algorithm determines the state of the sensor node, as required by each application and as determined by the local environmental conditions and the states of the adjacent nodes. A control analysis shows that the proposed bio-inspired scheme guarantees the system stability by controlling the parameters of each node. Simulation results also indicate that the proposed scheme provides significant energy savings, as well as reliable delay guarantees by controlling the states of the sensor nodes.

THE SELECTION OF ALTITUDE AND INCLINATION FOR REMOTE SENSING SATELLITES (원격탐사 위성의 고도와 궤도기울기 결정)

  • 이정숙;이병선
    • Journal of Astronomy and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.244-255
    • /
    • 1995
  • The success of a satellites mission is largely depended upon the choice of an appropriate orbit. In the case of a remote sensing satellite which observes the Earth, there exits an optimum solar elevation angle depending on the mission. Therefore a sun-synchronous orbit is suitable for a remote sensing mission. The second-order theory for secular perturbation due to non-symmetric geopotential was described. To design a sun-synchronous orbit, a constraint condition on regression of node was derived. A algorithm to determine the altitude and the inclination was introduced using this constraint condition. As practical examples, the altitudes and the inclinations of four remote sensing satellites were calculated. The ground tracks obtained by the orbit propagator were used to verify the resulting sun-synchronous orbital elements.

  • PDF

Development of Kinematic Ephemeris Generator for Korea Pathfinder Lunar Orbiter (KPLO)

  • Song, Min-Sup;Park, Sang-Young;Kim, Youngkwang;Yim, Jo Ryeong
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.3
    • /
    • pp.199-208
    • /
    • 2020
  • This paper presents a kinematic ephemeris generator for Korea Pathfinder Lunar Orbiter (KPLO) and its performance test results. The kinematic ephemeris generator consists of a ground ephemeris compressor and an onboard ephemeris calculator. The ground ephemeris compressor has to compress desired orbit propagation data by using an interpolation method in a ground system. The onboard ephemeris calculator can generate spacecraft ephemeris and the Sun/Moon ephemeris in onboard computer of the KPLO. Among many interpolation methods, polynomial interpolation with uniform node, Chebyshev interpolation, Hermite interpolation are tested for their performances. As a result of the test, it is shown that all the methods have some cases that meet requirements but there are some performance differences. It is also confirmed that, the Chebyshev interpolation shows better performance than other methods for spacecraft ephemeris generation, and the polynomial interpolation with uniform nodes yields good performance for the Sun/Moon ephemeris generation. Based on these results, a Kinematic ephemeris generator is developed for the KPLO mission. Then, the developed ephemeris generator can find an approximating function using interpolation method considering the size and accuracy of the data to be transmitted.