Journal of Korean Society for Geospatial Information Science
/
v.24
no.1
/
pp.89-98
/
2016
In this paper, we proposed an automated areal feature matching method based on geometric similarity without user intervention and is applied into areal features of many-to-many relation, for confusion of spatial data-sets of different scale and updating cycle. Firstly, areal feature(node) that a value of inclusion function is more than 0.4 was connected as an edge in adjacency matrix and candidate corresponding areal features included many-to-many relation was identified by multiplication of adjacency matrix. For geometrical matching, these multiple candidates corresponding areal features were transformed into an aggregated polygon as a convex hull generated by a curve-fitting algorithm. Secondly, we defined matching criteria to measure geometrical quality, and these criteria were changed into normalized values, similarity, by similarity function. Next, shape similarity is defined as a weighted linear combination of these similarities and weights which are calculated by Criteria Importance Through Intercriteria Correlation(CRITIC) method. Finally, in training data, we identified Equal Error Rate(EER) which is trade-off value in a plot of precision versus recall for all threshold values(PR curve) as a threshold and decided if these candidate pairs are corresponding pairs or not. To the result of applying the proposed method in a digital topographic map and a base map of address system(KAIS), we confirmed that some many-to-many areal features were mis-detected in visual evaluation and precision, recall and F-Measure was highly 0.951, 0.906, 0.928, respectively in statistical evaluation. These means that accuracy of the automated matching between different spatial data-sets by the proposed method is highly. However, we should do a research on an inclusion function and a detail matching criterion to exactly quantify many-to-many areal features in future.
KIPS Transactions on Software and Data Engineering
/
v.4
no.1
/
pp.37-44
/
2015
In traditional social network analysis, the betweenness centrality measure has been heavily used to identify the relative importance of nodes. Since the time complexity to calculate the betweenness centrality is very high, however, it is difficult to get it of each node in large-scale social network where there are so many nodes and edges. In our past study, we defined a new type of network, called the expanded ego network, which is built only with each node's local information, i.e., neighbor information of the node's neighbor nodes, and also defined a new measure, called the expanded ego betweenness centrality. In this paper, We propose algorithm that quickly computes expanded ego betweenness centrality by exploiting structural properties of expanded ego network. Through the experiment with virtual network used Barab$\acute{a}$si-Albert network model to represent the generic social network and facebook network to represent actual social network, We show that the node's importance rank based on the expanded ego betweenness centrality has high similarity with that the node's importance rank based on the existing betweenness centrality. We also show that the proposed algorithm computes the expanded ego betweenness centrality quickly than existing algorithm.
Communications for Statistical Applications and Methods
/
v.19
no.4
/
pp.547-558
/
2012
Social network analysis is a graphical technique to search the relationships and characteristics of nodes (people, companies, and organizations) and an important node for positioning a visualized social network figure; however, it is difficult to characterize nodes in a social network figure. Therefore, their relationships and characteristics could be presented through an application of correspondence analysis to an affiliation matrix that is a type of similarity matrix between nodes. In this study, we provide the relationships and characteristics around authors and keywords in the JKSS(Journal of the Korean Statistical Society) of the Korean Statistical Society through the use of social network analysis and correspondence analysis.
Journal of Korean Society of Industrial and Systems Engineering
/
v.21
no.48
/
pp.123-132
/
1998
The group formation problem of the machine and part is a very important issue in the planning stage of cellular manufacturing systems. This paper investigates Self-Organizing Map(SOM) neural networks approach to machine-part grouping problem. We present a two-phase algorithm based on SOM for grouping parts and machines. SOM can learn from complex, multi-dimensional data and transform them into visually decipherable clusters. Output layer in SOM network is one-dimensional structure and the number of output node has been increased sufficiently to spread out the input vectors in the order of similarity. The proposed algorithm performs remarkably well in comparison with many other algorithms for the well-known problems shown in previous papers.
Journal of the Korean Institute of Telematics and Electronics B
/
v.32B
no.11
/
pp.1536-1544
/
1995
We propose a design scheme of a binary decision tree and apply it to the tire tread pattern recognition problem. In this scheme, a binary decision tree is constructed by using fuzzy C-means( FCM ) algorithm. All the available features are used while clustering. At each node, the best feature or feature subset among these available features is selected based on proposed similarity measure. The decision tree can be used for the classification of unknown patterns. The proposed design scheme is applied to the tire tread pattern recognition problem. The design procedure including feature extraction is described. Experimental results are given to show the usefulness of this scheme.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.11
no.8
/
pp.3950-3964
/
2017
With the increasing popularity of 3D technology such as 3D printing, 3D modeling, etc., there is a growing need to search for similar models on the internet. Matching non-rigid shapes has become an active research field in computer graphics. In this paper, we present an efficient and effective non-rigid model retrieval method based on topological structure and local volume. The integral geodesic distances are first calculated for each vertex on a mesh to construct the topological structure. Next, each node on the topological structure is assigned a local volume that is calculated using the shape diameter function (SDF). Finally, we utilize the Hungarian algorithm to measure similarity between two non-rigid models. Experimental results on the latest benchmark (SHREC' 15 Non-rigid 3D Shape Retrieval) demonstrate that our method works well compared to the state-of-the-art.
Federated learning provides an efficient integrated model for distributed data, allowing the local training of different data. Meanwhile, the goal of multi-task learning is to simultaneously establish models for multiple related tasks, and to obtain the underlying main structure. However, traditional federated multi-task learning models not only have strict requirements for the data distribution, but also demand large amounts of calculation and have slow convergence, which hindered their promotion in many fields. In our work, we apply the rank constraint on weight vectors of the multi-task learning model to adaptively adjust the task's similarity learning, according to the distribution of federal node data. The proposed model has a general framework for solving optimal solutions, which can be used to deal with various data types. Experiments show that our model has achieved the best results in different dataset. Notably, our model can still obtain stable results in datasets with large distribution differences. In addition, compared with traditional federated multi-task learning models, our algorithm is able to converge on a local optimal solution within limited training iterations.
Journal of the Korean Society for information Management
/
v.40
no.1
/
pp.121-148
/
2023
The purpose of this study is to propose a scholarly paper recommendation system based on metadata attribute similarity with excellent performance. This study suggests a scholarly paper recommendation method that combines techniques from two sub-fields of Library and Information Science, namely metadata use in Information Organization and co-citation analysis, author bibliographic coupling, co-occurrence frequency, and cosine similarity in Bibliometrics. To conduct experiments, a total of 9,643 paper metadata related to "inequality" and "divide" were collected and refined to derive relative coordinate values between author, keyword, and title attributes using cosine similarity. The study then conducted experiments to select weight conditions and dimension numbers that resulted in a good performance. The results were presented and evaluated by users, and based on this, the study conducted discussions centered on the research questions through reference node and recommendation combination characteristic analysis, conjoint analysis, and results from comparative analysis. Overall, the study showed that the performance was excellent when author-related attributes were used alone or in combination with title-related attributes. If the technique proposed in this study is utilized and a wide range of samples are secured, it could help improve the performance of recommendation techniques not only in the field of literature recommendation in information services but also in various other fields in society.
Choi, Han Min;Mun, Seong Min;Ha, Hyo Ji;Lee, Kyung Won
Design Convergence Study
/
v.14
no.4
/
pp.133-150
/
2015
In this study, we proposed Interactive Visualization methods that can be analyzed relations between nations in various viewpoints such as period, issue using total 5211 of the UN General Assembly voting data.For this research, we devised a similarity matrix between nations and developed two visualization method based similarity matrix. The first one is Network Graph Visualization that can be showed relations between nations which participated in the vote of the UN General Assembly like Social Network Graph by year. and the second one is Proximity based Circular Visualization that can be analyzed relations between nations focus on one nation or Changes in voting patterns between nations according to time. This study have a great signification. that's because we proposed Proximity based Circular Visualization methods which merged Line and Circle Graph for network analysis that never tried from other cases of studies that utilize conventional voting data and made it. We also derived co-operatives of each visualization through conducting a comparative experiment for the two visualization. As a research result, we found that Proximity based Circular Visualization can be better analysis each node and Network Graph Visualization can be better analysis patterns for the nations.
To enhance the user response time of content-based retrieval service for multimedia information, several multi-dimensional index schemes have been proposed. M-tree, a well-known multidimensional index scheme is of metric space access method, and is based on the distance between objects in the metric space. However, since the overlap between index spaces of nodes might enlarge the number of nodes of M-tree accessed for query processing, the user response time for content-based multimedia information retrieval grows longer. In this paper, we propose a node split algorithm which is able to reduce the sire of overlap between index spaces of nodes in M-tree. In the proposed scheme, we choose a virtual center point as the routing object and entry redistribution as the postprocessing after node split in order to reduce the radius of index space of a node, and finally in order to reduce the overlap between the index spaces of routing nodes. From the experimental results, we can see the proposed split algorithm reduce the overlap between index space of nodes and finally enhance the user response time for similarity-based query processing.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.