• Title/Summary/Keyword: Node Similarity

Search Result 83, Processing Time 0.024 seconds

Virtual Network Embedding with Multi-attribute Node Ranking Based on TOPSIS

  • Gon, Shuiqing;Chen, Jing;Zhao, Siyi;Zhu, Qingchao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.522-541
    • /
    • 2016
  • Network virtualization provides an effective way to overcome the Internet ossification problem. As one of the main challenges in network virtualization, virtual network embedding refers to mapping multiple virtual networks onto a shared substrate network. However, existing heuristic embedding algorithms evaluate the embedding potential of the nodes simply by the product of different resource attributes, which would result in an unbalanced embedding. Furthermore, ignoring the hops of substrate paths that the virtual links would be mapped onto may restrict the ability of the substrate network to accept additional virtual network requests, and lead to low utilization rate of resource. In this paper, we introduce and extend five node attributes that quantify the embedding potential of the nodes from both the local and global views, and adopt the technique for order preference by similarity ideal solution (TOPSIS) to rank the nodes, aiming at balancing different node attributes to increase the utilization rate of resource. Moreover, we propose a novel two-stage virtual network embedding algorithm, which maps the virtual nodes onto the substrate nodes according to the node ranks, and adopts a shortest path-based algorithm to map the virtual links. Simulation results show that the new algorithm significantly increases the long-term average revenue, the long-term revenue to cost ratio and the acceptance ratio.

The Need for Paradigm Shift in Semantic Similarity and Semantic Relatedness : From Cognitive Semantics Perspective (의미간의 유사도 연구의 패러다임 변화의 필요성-인지 의미론적 관점에서의 고찰)

  • Choi, Youngseok;Park, Jinsoo
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.1
    • /
    • pp.111-123
    • /
    • 2013
  • Semantic similarity/relatedness measure between two concepts plays an important role in research on system integration and database integration. Moreover, current research on keyword recommendation or tag clustering strongly depends on this kind of semantic measure. For this reason, many researchers in various fields including computer science and computational linguistics have tried to improve methods to calculating semantic similarity/relatedness measure. This study of similarity between concepts is meant to discover how a computational process can model the action of a human to determine the relationship between two concepts. Most research on calculating semantic similarity usually uses ready-made reference knowledge such as semantic network and dictionary to measure concept similarity. The topological method is used to calculated relatedness or similarity between concepts based on various forms of a semantic network including a hierarchical taxonomy. This approach assumes that the semantic network reflects the human knowledge well. The nodes in a network represent concepts, and way to measure the conceptual similarity between two nodes are also regarded as ways to determine the conceptual similarity of two words(i.e,. two nodes in a network). Topological method can be categorized as node-based or edge-based, which are also called the information content approach and the conceptual distance approach, respectively. The node-based approach is used to calculate similarity between concepts based on how much information the two concepts share in terms of a semantic network or taxonomy while edge-based approach estimates the distance between the nodes that correspond to the concepts being compared. Both of two approaches have assumed that the semantic network is static. That means topological approach has not considered the change of semantic relation between concepts in semantic network. However, as information communication technologies make advantage in sharing knowledge among people, semantic relation between concepts in semantic network may change. To explain the change in semantic relation, we adopt the cognitive semantics. The basic assumption of cognitive semantics is that humans judge the semantic relation based on their cognition and understanding of concepts. This cognition and understanding is called 'World Knowledge.' World knowledge can be categorized as personal knowledge and cultural knowledge. Personal knowledge means the knowledge from personal experience. Everyone can have different Personal Knowledge of same concept. Cultural Knowledge is the knowledge shared by people who are living in the same culture or using the same language. People in the same culture have common understanding of specific concepts. Cultural knowledge can be the starting point of discussion about the change of semantic relation. If the culture shared by people changes for some reasons, the human's cultural knowledge may also change. Today's society and culture are changing at a past face, and the change of cultural knowledge is not negligible issues in the research on semantic relationship between concepts. In this paper, we propose the future directions of research on semantic similarity. In other words, we discuss that how the research on semantic similarity can reflect the change of semantic relation caused by the change of cultural knowledge. We suggest three direction of future research on semantic similarity. First, the research should include the versioning and update methodology for semantic network. Second, semantic network which is dynamically generated can be used for the calculation of semantic similarity between concepts. If the researcher can develop the methodology to extract the semantic network from given knowledge base in real time, this approach can solve many problems related to the change of semantic relation. Third, the statistical approach based on corpus analysis can be an alternative for the method using semantic network. We believe that these proposed research direction can be the milestone of the research on semantic relation.

A Minimization Technique of XML Path Comparison Based on Signature (시그니쳐를 이용한 XML 경로 비교의 최소화 기법)

  • Jang, Kyung-Hoon;Hwang, Byung-Yeon
    • The Journal of Society for e-Business Studies
    • /
    • v.17 no.3
    • /
    • pp.61-72
    • /
    • 2012
  • Since XML allows users to define any tags, XML documents with various structures have been created. Accordingly, many studies on clustering and searching the XML documents based on the similarity of paths have been done in order to manage the documents efficiently. To retrieve XML documents having similar structures, the three-dimensional bitmap indexing technique uses a path as a unit when it creates an index. If a path structure is changed, the technique recognizes it as a new path. Thus, another technique to measure the similarity of paths was proposed. To compute the similarity between two paths, the technique compares every node of the paths. It causes unnecessary comparison of the nodes, which do not exist in common between the two paths. In this paper, we propose a new technique that minimizes the comparison using signatures and show the performance evaluation results of the technique. The comparison speed of proposed technique was 20 percent faster than the existing technique.

Skeleton Tree for Shape-Based Image Retrieval (모양 기반 영상검색을 위한 골격 나무 구조)

  • Park, Jong-Seung
    • The KIPS Transactions:PartB
    • /
    • v.14B no.4
    • /
    • pp.263-272
    • /
    • 2007
  • This paper proposes a skeleton-based hierarchical shape description scheme, called a skeleton tree, for accurate shape-based image retrieval. A skeleton tree represents an object shape as a hierarchical tree where high-level nodes describe parts of coarse trunk regions and low-level nodes describe fine details of boundary regions. Each node refines the shape of its parent node. Most of the noise disturbances are limited to bottom level nodes and the boundary noise is reduced by decreasing weights on the bottom levels. The similarity of two skeleton trees is computed by considering the best match of a skeleton tree to a sub-tree of another skeleton tree. The proposed method uses a hybrid similarity measure by employing both Fourier descriptors and moment invariants in computing the similarity of two skeleton trees. Several experimental results are presented demonstrating the validity of the skeleton tree scheme for the shape description and indexing.

Semi-automatic Data Fusion Method for Spatial Datasets (공간 정보를 가지는 데이터셋의 준자동 융합 기법)

  • Yoon, Jong-chan;Kim, Han-joon
    • The Journal of Society for e-Business Studies
    • /
    • v.26 no.4
    • /
    • pp.1-13
    • /
    • 2021
  • With the development of big data-related technologies, it has become possible to process vast amounts of data that could not be processed before. Accordingly, the establishment of an automated data selection and fusion process for the realization of big data-based services has become a necessity, not an option. In this paper, we propose an automation technique to create meaningful new information by fusing datasets containing spatial information. Firstly, the given datasets are embedded by using the Node2Vec model and the keywords of each dataset. Then, the semantic similarities among all of datasets are obtained by calculating the cosine similarity for the embedding vector of each pair of datasets. In addition, a person intervenes to select some candidate datasets with one or more spatial identifiers from among dataset pairs with a relatively higher similarity, and fuses the dataset pairs to visualize them. Through such semi-automatic data fusion processes, we show that significant fused information that cannot be obtained with a single dataset can be generated.

A Study on Decision Tree for Multiple Binary Responses

  • Lee, Seong-Keon
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.3
    • /
    • pp.971-980
    • /
    • 2003
  • The tree method can be extended to multivariate responses, such as repeated measure and longitudinal data, by modifying the split function so as to accommodate multiple responses. Recently, some decision trees for multiple responses have been constructed by Segal (1992) and Zhang (1998). Segal suggested a tree can analyze continuous longitudinal response using Mahalanobis distance for within node homogeneity measures and Zhang suggested a tree can analyze multiple binary responses using generalized entropy criterion which is proportional to maximum likelihood of joint distribution of multiple binary responses. In this paper, we will modify CART procedure and suggest a new tree-based method that can analyze multiple binary responses using similarity measures.

Collective Prediction exploiting Spatio Temporal correlation (CoPeST) for energy efficient wireless sensor networks

  • ARUNRAJA, Muruganantham;MALATHI, Veluchamy
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2488-2511
    • /
    • 2015
  • Data redundancy has high impact on Wireless Sensor Network's (WSN) performance and reliability. Spatial and temporal similarity is an inherent property of sensory data. By reducing this spatio-temporal data redundancy, substantial amount of nodal energy and bandwidth can be conserved. Most of the data gathering approaches use either temporal correlation or spatial correlation to minimize data redundancy. In Collective Prediction exploiting Spatio Temporal correlation (CoPeST), we exploit both the spatial and temporal correlation between sensory data. In the proposed work, the spatial redundancy of sensor data is reduced by similarity based sub clustering, where closely correlated sensor nodes are represented by a single representative node. The temporal redundancy is reduced by model based prediction approach, where only a subset of sensor data is transmitted and the rest is predicted. The proposed work reduces substantial amount of energy expensive communication, while maintaining the data within user define error threshold. Being a distributed approach, the proposed work is highly scalable. The work achieves up to 65% data reduction in a periodical data gathering system with an error tolerance of 0.6℃ on collected data.

Summarizing the Differences in Chinese-Vietnamese Bilingual News

  • Wu, Jinjuan;Yu, Zhengtao;Liu, Shulong;Zhang, Yafei;Gao, Shengxiang
    • Journal of Information Processing Systems
    • /
    • v.15 no.6
    • /
    • pp.1365-1377
    • /
    • 2019
  • Summarizing the differences in Chinese-Vietnamese bilingual news plays an important supporting role in the comparative analysis of news views between China and Vietnam. Aiming at cross-language problems in the analysis of the differences between Chinese and Vietnamese bilingual news, we propose a new method of summarizing the differences based on an undirected graph model. The method extracts elements to represent the sentences, and builds a bridge between different languages based on Wikipedia's multilingual concept description page. Firstly, we calculate the similarity between Chinese and Vietnamese news sentences, and filter the bilingual sentences accordingly. Then we use the filtered sentences as nodes and the similarity grade as the weight of the edge to construct an undirected graph model. Finally, combining the random walk algorithm, the weight of the node is calculated according to the weight of the edge, and sentences with highest weight can be extracted as the difference summary. The experiment results show that our proposed approach achieved the highest score of 0.1837 on the annotated test set, which outperforms the state-of-the-art summarization models.

Link Prediction Algorithm for Signed Social Networks Based on Local and Global Tightness

  • Liu, Miao-Miao;Hu, Qing-Cui;Guo, Jing-Feng;Chen, Jing
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.213-226
    • /
    • 2021
  • Given that most of the link prediction algorithms for signed social networks can only complete sign prediction, a novel algorithm is proposed aiming to achieve both link prediction and sign prediction in signed networks. Based on the structural balance theory, the local link tightness and global link tightness are defined respectively by using the structural information of paths with the step size of 2 and 3 between the two nodes. Then the total similarity of the node pair can be obtained by combining them. Its absolute value measures the possibility of the two nodes to establish a link, and its sign is the sign prediction result of the predicted link. The effectiveness and correctness of the proposed algorithm are verified on six typical datasets. Comparison and analysis are also carried out with the classical prediction algorithms in signed networks such as CN-Predict, ICN-Predict, and PSNBS (prediction in signed networks based on balance and similarity) using the evaluation indexes like area under the curve (AUC), Precision, improved AUC', improved Accuracy', and so on. Results show that the proposed algorithm achieves good performance in both link prediction and sign prediction, and its accuracy is higher than other algorithms. Moreover, it can achieve a good balance between prediction accuracy and computational complexity.

Iris Segmentation and Recognition

  • Kim, Jae-Min;Cho, Seong-Won
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.227-230
    • /
    • 2002
  • A new iris segmentation and recognition method is described. Combining a statistical classification and elastic boundary fitting, the iris is first segmented robustly and accurately. Once the iris is segmented, one-dimensional signals are computed in the iris and decomposed into multiple frequency bands. Each decomposed signal is approximated by a piecewise linear curve connecting a small set of node points. The node points represent features of each signal. The similarity measture between two iris images is the normalized cross-correlation coefficients between simplified signals.