• 제목/요약/키워드: Node Similarity

검색결과 83건 처리시간 0.12초

Community Detection using Closeness Similarity based on Common Neighbor Node Clustering Entropy

  • Jiang, Wanchang;Zhang, Xiaoxi;Zhu, Weihua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권8호
    • /
    • pp.2587-2605
    • /
    • 2022
  • In order to efficiently detect community structure in complex networks, community detection algorithms can be designed from the perspective of node similarity. However, the appropriate parameters should be chosen to achieve community division, furthermore, these existing algorithms based on the similarity of common neighbors have low discrimination between node pairs. To solve the above problems, a noval community detection algorithm using closeness similarity based on common neighbor node clustering entropy is proposed, shorted as CSCDA. Firstly, to improve detection accuracy, common neighbors and clustering coefficient are combined in the form of entropy, then a new closeness similarity measure is proposed. Through the designed similarity measure, the closeness similar node set of each node can be further accurately identified. Secondly, to reduce the randomness of the community detection result, based on the closeness similar node set, the node leadership is used to determine the most closeness similar first-order neighbor node for merging to create the initial communities. Thirdly, for the difficult problem of parameter selection in existing algorithms, the merging of two levels is used to iteratively detect the final communities with the idea of modularity optimization. Finally, experiments show that the normalized mutual information values are increased by an average of 8.06% and 5.94% on two scales of synthetic networks and real-world networks with real communities, and modularity is increased by an average of 0.80% on the real-world networks without real communities.

A Study on the Performance of Similarity Indices and its Relationship with Link Prediction: a Two-State Random Network Case

  • Ahn, Min-Woo;Jung, Woo-Sung
    • Journal of the Korean Physical Society
    • /
    • 제73권10호
    • /
    • pp.1589-1595
    • /
    • 2018
  • Similarity index measures the topological proximity of node pairs in a complex network. Numerous similarity indices have been defined and investigated, but the dependency of structure on the performance of similarity indices has not been sufficiently investigated. In this study, we investigated the relationship between the performance of similarity indices and structural properties of a network by employing a two-state random network. A node in a two-state network has binary types that are initially given, and a connection probability is determined from the state of the node pair. The performances of similarity indices are affected by the number of links and the ratio of intra-connections to inter-connections. Similarity indices have different characteristics depending on their type. Local indices perform well in small-size networks and do not depend on whether the structure is intra-dominant or inter-dominant. In contrast, global indices perform better in large-size networks, and some such indices do not perform well in an inter-dominant structure. We also found that link prediction performance and the performance of similarity are correlated in both model networks and empirical networks. This relationship implies that link prediction performance can be used as an approximation for the performance of the similarity index when information about node type is unavailable. This relationship may help to find the appropriate index for given networks.

SNOMED CT 용어체계에서 형제 노드의 유사도 분석 기법 (Similarity Analysis of Sibling Nodes in SNOMED CT Terminology System)

  • 류우석
    • 한국전자통신학회논문지
    • /
    • 제19권1호
    • /
    • pp.295-300
    • /
    • 2024
  • 본 논문에서는 SNOMED CT 용어체계가 가지는 불완전성을 논의하고 이를 유지하는 방법으로 형제 노드 간 유사성을 평가하는 지표를 제안한다. SNOMED CT는 방대한 양의 의학용어를 포함하고 있으나 계층구조 내 컨셉의 누락 등 온톨로지의 불완전성 문제가 존재한다. 누락된 컨셉 발견을 위해 다수의 노드로 구성된 형제 노드 그룹 내에서의 노드 간 유사도 평가를 위한 지표를 제안하고 유사도가 낮은 그룹을 도출하였다. 2023년 3월 SNOMED CT 국제 배포판에 적용하여 형제 노드 그룹들의 유사도를 분석한 결과 임상적 발견 컨셉의 하위 컨셉들 중 2개 이상의 형제 노드를 가진 29,199개의 형제 노드 그룹의 평균 유사도는 0.81로 나타났다. 반면, 유사도가 가장 낮은 그룹은 중독 컨셉의 자식 컨셉으로 그 유사도는 0.0036으로 확인되었다.

A METHOD OF IMAGE DATA RETRIEVAL BASED ON SELF-ORGANIZING MAPS

  • Lee, Mal-Rey;Oh, Jong-Chul
    • Journal of applied mathematics & informatics
    • /
    • 제9권2호
    • /
    • pp.793-806
    • /
    • 2002
  • Feature-based similarity retrieval become an important research issue in image database systems. The features of image data are useful to discrimination of images. In this paper, we propose the highspeed k-Nearest Neighbor search algorithm based on Self-Organizing Maps. Self-Organizing Maps (SOM) provides a mapping from high dimensional feature vectors onto a two-dimensional space. The mapping preserves the topology of the feature vectors. The map is called topological feature map. A topological feature map preserves the mutual relations (similarity) in feature spaces of input data. and clusters mutually similar feature vectors in a neighboring nodes. Each node of the topological feature map holds a node vector and similar images that is closest to each node vector. In topological feature map, there are empty nodes in which no image is classified. We experiment on the performance of our algorithm using color feature vectors extracted from images. Promising results have been obtained in experiments.

노드정보를 이용한 문서검색의 성능에 관한 연구 (A Study on the Performance of Structured Document Retrieval Using Node Information)

  • 윤소영
    • 정보관리학회지
    • /
    • 제24권1호
    • /
    • pp.103-120
    • /
    • 2007
  • 노드는 문서를 구성하는 작은 크기의 의미 있는 정보 단위이다. 정보검색에 문서의 구조정보를 이용함과 더불어 문서보다 작은 검색단위에 대한 연구가 활발히 이루어지고 있다. 이 연구에서는 노드정보를 이용한 검색실험을 위해 벡터공간모델 검색기법을 사용하여 다양한 유사도 산출방식을 적용한 실험과 구조정보를 활용한 확장 실험을 수행하였다. 실험결과 문서의 유사도를 산출하는 방식에 따른 검색성능의 차이는 거의 나타나지 않았으며, 구조정보를 적용하는 확장 노드검색이 가장 좋은 성능을 나타냈다.

유사도 평가를 위한 트리 비교 알고리즘 (A Tree-Compare Algorithm for Similarity Evaluation)

  • 김영철;유재우
    • 정보처리학회논문지A
    • /
    • 제11A권2호
    • /
    • pp.159-164
    • /
    • 2004
  • 기존의 트리 비교에 관한 연구는 대부분 노드에 가중치가 있거나 레이블이 있는 트리(장식이 있는 트리)에 대해서 연구되었다. 그러나 본 연구에서는 장식이 없는 서로 다른 두개의 트리를 비교하여 유사도를 평가하는 알고리즘을 제시하고 구현한다. 본 시스템에서 제시한 트리 유사도 평가 알고리즘은 비교할 두 개의 트리를 언파서에 의해 노드 스트링으로 변환된 후, 유사도 알고리즘에 의해서 평가되며, 0.0-1.0 사이의 유사 값을 돌려준다. 본 논문의 실험 부분에서는 여러 형태의 트리를 비교 분석하였으며, 두 트리 사이에 일치되는 노드와 불일치 되는 노드를 시각적으로 표현하였다. 본 연구를 활용하면, 특정한 프로그램이나 문서의 유사도 및 중복 코드 발견 등에 활용할 수가 있다.

퍼지 엔트로피 함수를 이용한 송전 네트워크 클러스터링 (The transmission Network clustering using a fuzzy entropy function)

  • 장세환;김진호;이상혁;박준호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.225-227
    • /
    • 2006
  • The transmission network clustering using a fuzzy entropy function are proposed in this paper. We can define a similarity measure through a fuzzy entropy. All node in the transmission network system has its own values indicating the physical characteristics of that system and the similarity measure in this paper is defined through the system-wide characteristic values at each node. However, to tackle the geometric mis-clustering problem, that is, to avoid the clustering of geometrically distant locations with similar measures, the locational informations are properly considered and incorporated in the proposed similarity measure. In this paper, a new regional clustering measure for the transmission network system is proposed and proved. The proposed measure is verified through IEEE 39 bus system.

  • PDF

시그니처 트리를 사용한 의미적 유사성 검색 기법 (Semantic Similarity Search using the Signature Tree)

  • 김기성;임동혁;김철한;김형주
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제34권6호
    • /
    • pp.546-553
    • /
    • 2007
  • 온톨로지의 활용이 늘어나면서 의미적 유사성 검색에 대한 관심이 높아지고 있다. 본 논문에서는 질의 객체와의 의미적 유사성이 높은 객체를 검색하는 최근접 질의 기법을 제안하였다. 의미적 유사성을 측정하는 유사성 함수로는 최적 대응값 방식의 유사도 함수를 사용하였으며 주석 정보에 대한 색인을 위해 시그니처 트리를 사용하였다. 시그니처 트리는 집합 유사성 검색에서 많이 사용되는 색인 구조로서 유사성 검색에 사용하기 위해서는 검색시 각 노드를 탐색하였을 때 발견할 수 있는 유사도의 최대값을 예측할 수 있어야 한다. 이에 본 논문에서는 최적 대응값 방식의 유사도 함수에 대한 예측 최대값 함수를 제안하고 올바른 예측 함수임을 증명하였다. 또한 시그니처 트리에 동일한 시그니처가 중복되어 저장되지 않도록 구조를 개선하였다. 이는 시그니처 트리의 크기를 감소시킬 뿐만 아니라 질의 성능 또한 향상시켜 주었다. 실험의 데이타로는 대용량 온톨로지와 주석 정보 데이타를 제공하는 Gene Ontology(GO)를 사용하였다. 실험에서는 제안한 방법의 성능 향상 외에도 페이지 크기와 노드 분할 방법이 의미적 유사성 질의 성능에 미치는 영향에 대해 알아보았다.

부모-자식 행렬을 사용한 XML 문서 유사도 측정과 군집 기법 (Similarity Measure and Clustering Technique for XML Documents by a Parent-Child Matrix)

  • 이윤구;김우생
    • 한국정보통신학회논문지
    • /
    • 제19권7호
    • /
    • pp.1599-1607
    • /
    • 2015
  • 최근 들어, 인터넷에서 자주 사용되는 XML 문서들에 대한 접근, 질의와 관리를 위한 효율적인 기법들이 연구 되어 왔다. 이 논문에서, 우리는 XML 문서를 효율적으로 군집화하기 위해 부모-자식 행렬 기법을 제안한다. 부모-자식 행렬은 XML 문서의 내용과 구조의 특징들을 분석한다. 부모-자식 행렬의 각 셀은 XML 트리 노드의 값이거나, 트리에서 부모-자식 관계가 존재할 때의 자식 노드의 값이 된다. 따라서 두 XML 문서의 유사도는 대응하는 부모-자식 행렬들의 유사도로 측정된다. 실험을 통해 우리가 제안하는 기법이 좋은 결과를 냄을 보였다.

Community Discovery in Weighted Networks Based on the Similarity of Common Neighbors

  • Liu, Miaomiao;Guo, Jingfeng;Chen, Jing
    • Journal of Information Processing Systems
    • /
    • 제15권5호
    • /
    • pp.1055-1067
    • /
    • 2019
  • In view of the deficiencies of existing weighted similarity indexes, a hierarchical clustering method initialize-expand-merge (IEM) is proposed based on the similarity of common neighbors for community discovery in weighted networks. Firstly, the similarity of the node pair is defined based on the attributes of their common neighbors. Secondly, the most closely related nodes are fast clustered according to their similarity to form initial communities and expand the communities. Finally, communities are merged through maximizing the modularity so as to optimize division results. Experiments are carried out on many weighted networks, which have verified the effectiveness of the proposed algorithm. And results show that IEM is superior to weighted common neighbor (CN), weighted Adamic-Adar (AA) and weighted resources allocation (RA) when using the weighted modularity as evaluation index. Moreover, the proposed algorithm can achieve more reasonable community division for weighted networks compared with cluster-recluster-merge-algorithm (CRMA) algorithm.