• Title/Summary/Keyword: Node Location

Search Result 710, Processing Time 0.024 seconds

Routing for Enhancing Source-Location Privacy in Wireless Sensor Networks of Multiple Assets

  • Tscha, Yeong-Hwan
    • Journal of Communications and Networks
    • /
    • v.11 no.6
    • /
    • pp.589-598
    • /
    • 2009
  • In wireless sensor networks, a node that reports information gathered from adjacent assets should relay packets appropriately so that its location context is kept private, and thereby helping ensure the security of the assets that are being monitored. Unfortunately, existing routing methods that counter the local eavesdropping-based tracing deal with a single asset, and most of them suffer from the packet-delivery latency as they prefer to take a separate path of many hops for each packet being sent. In this paper, we propose a routing method, greedy perimeter stateless routing-based source-location privacy with crew size w (GSLP-w), that enhances location privacy of the packet-originating node (i.e., active source) in the presence of multiple assets. GSLP-w is a hybrid method, in which the next-hop node is chosen in one of four modes, namely greedy, random, perimeter, and retreat modes. Random forwarding brings the path diversity, while greedy forwarding refrains from taking an excessively long path and leads to convergence to the destination. Perimeter routing makes detours that avoid the nodes near assets so that they cannot be located by an adversary tracing up the route path. We study the performance of GSLP-w with respect to crew size w (the number of packets being sent per path) and the number of sources. GSLP-w is compared with phantom routing-single path (PR-SP), which is a notable routing method for source-location privacy and our simulation results show that improvements from the point of the ratio of safety period and delivery latency become significant as the number of source nodes increases.

Location-based Support Multi-path Multi-rate Routing for Grid Mesh Networks

  • Hieu, Cao Trong;Hong, Choong Seon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.1264-1266
    • /
    • 2009
  • We introduce a location-based routing model applied for grid backbone nodes in wireless mesh network. The number of paths with nearest distance between two nodes is calculated and used as key parameter to execute routing algorithm. Node will increase the transmission range that makes a trade off with data rate to reach its neighbors when node itself is isolated. The routing model is lightweight and oriented thanks to the simple but efficient routing algorithm.

A Center Location Problem on a Telecommunication Network (통신망에서의 수리센터 배치에 관한 연구)

  • Jeong, Ho-Yeon;Park, Sun-Dal;Jo, Yeong-Hyeon
    • IE interfaces
    • /
    • v.1 no.2
    • /
    • pp.45-52
    • /
    • 1988
  • Telecommunication networks include repeaters that serve to monitor the condition of each line within the network, and a center that dispatches repairmen to fix broken repeaters. In such a set-up, however, a problem arises : where is the most effective location for the center? First of all, we consider the network problem in which the nodes are the telephone offices and the arcs are the transmission lines. Here we deal with the center location problem in which the center must be located at a node and calls for service are assumed to occur on the arcs. This thesis proposes to prove that this problem can be transformed into a 1-median problem. Furthermore, the transformed problem will be proven to be equivalent to the center location problem that minimizes the sum of the distances weighted by the degrees of each node.

  • PDF

Fixed node reduction technique using relative coordinate estimation algorithm (상대좌표 추정 알고리즘을 이용한 고정노드 저감기법)

  • Cho, Hyun-Jong;Kim, Jong-Su;Lee, Sung-Geun;Kim, Jeong-Woo;Seo, Dong-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.220-226
    • /
    • 2013
  • Recently, with the rapid development of factory automation and logistics system, a few workers were able to manage the broad workplace such as large vessels and warehouse. To estimate the exact location of these workers in the conventional wireless indoor localization systems, three or more fixed nodes are generally used to recognize the location of a mobile node consisting of a single node. However, these methods are inefficient in terms of node deployment because the broad workplace requires a lot of fixed nodes compared to workers(mobile nodes). Therefore, to efficiently deploy fixed nodes in these environments that need a few workers, this paper presents a novel estimation algorithm which can reduce the number of fixed nodes by efficiently recognizing the relative coordinates of two fixed nodes through a mobile node composed of three nodes. Also, to minimize the distance errors between mobile node and fixed node, rounding estimation(RE) technique is proposed. Experimental results show that the error rate of localization is improved, by using proposed RE technique, 90.9% compared to conventional trilateration in the free space. In addition, despite the number of fixed nodes can be reduced by up to 50% in the indoor free space, the proposed estimation algorithm recognizes precise location which has average error of 0.15m.

A Balanced Energy Consumption Strategy using a Smart Base Station in Wireless Sensor Networks (무선 센서 네트워크에서 스마트기지국을 이용한 균형된 에너지소비 방안)

  • Park, Sun-Young
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.4
    • /
    • pp.458-465
    • /
    • 2014
  • In this paper, we propose a strategy to distribute the energy consumption over the network. The proposed strategy is based on geographic routing. We use a smart base station that maintains the residual energy and location information of sensor nodes and selects a head node and an anchor node using this information. A head node gathers and aggregates data from the sensor nodes in a target region that interests the user. An anchor node then transmits the data that was forwarded from the head node back to the smart base station. The smart base station extends network lifetime by selecting an optimal head node and an optimal anchor node. We simulate the proposed protocol and compare it with the LEACH protocol in terms of energy consumption, the number of dead nodes, and a distribution map of dead node locations.

Indexing Moving Objects with Real-Time Updates (실시간 갱신을 통한 이동 객체의 색인 기법)

  • Bok Kyoung-Soo;Seo Dong-Min;Yoo Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.4 no.4
    • /
    • pp.141-152
    • /
    • 2004
  • In this paper, we propose the index structure supporting the future position retrievals with efficiently updating continuous positions of moving objects in location based services. For reducing update costs of moving objects, our index structure directly accesses to the leaf node with moving objects using secondary index structure and performs bottom up update when node information is changed. Positions of moving objects are stored in primary index structure. In primary index structure, the split information similar to kd-tree is stored to internal node for increasing node's fanout. And the proposed index structure supports the future position retrievals using velocity of moving objects in the child node.

  • PDF

Location Recognition Method based on PTP Communication (점대점 통신 기반의 위치인식 기법)

  • Myagmar, Enkhzaya;Kwon, Soon Ryang
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.3
    • /
    • pp.33-39
    • /
    • 2014
  • Domestic and international researches, about intelligent systems based on a variety of location recognitions using location information, have actively proceeded. The representative location recognition method based on PTMP(Point To Multi Point) communication uses TOA(Time Of Arrival) to calculate distances to a fixed node that you want to recognize a position. The method is used to obtain the fixed node location information from three nodes location information that is applied by the triangulation method. There are disadvantages, an infrastructure should be established at a specific space and the system established cost is needed, in the location recognition method based on the PTMP communication, In this paper, the ranging based PTP(Point To Point) location recognition method is proposed to revise the disadvantage of PTMP location recognition method. And then it is compared with PTMP communication location recognition to evaluate performance. In this way, PTMP and PTP communication location recognition systems based on ranging were constructed and tested in an indoor environment. Experiment results show that the proposed PTP location recognition method could be confirmed to improve accuracy more than 3 times when it was compared with the existed PTMP location recognition method.

Technology of Location-Based Service for Mobile Tourism (모바일 관광을 위한 위치 기반 서비스 기술)

  • Lee, Geun-Sang;Kim, Ki-Jeong;Kim, Hyoung-Jun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.3
    • /
    • pp.1-11
    • /
    • 2013
  • This study developed the algorithm of location-based service for supplying the efficient tourism service to traveller using mobile device and applied it to the Jeonju HANOK village. First, the location service was advanced using algorithm coupling with GPS error range and travel speed in single line, and with GPS location and nearest neighbor method to line in multiple one. Also this study developed a program using DuraMap-Xr spatial engine for establishing topology to Node and Link in line automatically. And the foundation was prepared for improving travel convenience by programming location-based service technology to single and multiple lines based on Blackpoint-Xr mobile application engine.

Localization algorithm by using location error compensation through topology constructions (토폴로지 구축을 통한 측정 오차 보정 기반의 위치인식 기법)

  • You, Jin-Ho;Kwon, Young-Goo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.9
    • /
    • pp.2243-2250
    • /
    • 2014
  • In wireless sensor networks(WSNs), geographical routing algorithms can enhance the network capacity. However, in real WSNs, it is difficult for each node to know its physical location accurately. Especially, indoor environments contain various obstacles such as concrete wall, furniture which cause non-line-of-sight(NLOS) conditions. To solve the problem, we propose location error compensation algorithm by using two difference topology constructions. First topology is based on mobile node's location which is obtained from anchor nodes. Second topology is based on mutual distance from neighbor nodes. The proposed algorithm efficiently detects and corrects the location errors and significantly enhances the network performance of geographic routing in the presence of location errors.

Improving Location Positioning using Multiple Reference Nodes in a LoRaWAN Environment (LoRaWAN 환경에서 다중 레퍼런스 노드를 이용한 위치 측위 향상 기법)

  • Kim, Jonghun;Kim, Ki-Hyung;Kim, Kangseok
    • KIISE Transactions on Computing Practices
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • Low-power long-range networks (LoRa) has a comprehensive coverage of up to 30 km, so that long-range positioning is possible. However, the position error in the current LoRa environment is over 500 m. This makes it difficult to use practical location services in the LoRa environment. In this paper, we propose a method to improve the position accuracy by correcting an inaccurate visual error when sending a signal from a mobile node to a gateway through the reference node of each zone in the LoRa environment. Experiments were carried out using MATLAB, and a radio propagation algorithm, the Hata model, was used to cancel out the stationary noise and to evaluate the environmental noise. Experimental results showed that the error range decreased as the number of reference nodes increased and a mobile node approach the reference node.