• Title/Summary/Keyword: Node Failure

Search Result 400, Processing Time 0.028 seconds

Forwarding Protocol Along with Angle Priority in Vehicular Networks (차량 통신망에서 Angle 우선순위를 가진 Forwarding 프로토콜)

  • Yu, Suk-Dea;Lee, Dong-Chun
    • Convergence Security Journal
    • /
    • v.10 no.1
    • /
    • pp.41-48
    • /
    • 2010
  • Greedy protocols show good performance in Vehicular Ad-hoc Networks (VANETs) environment in general. But they make longer routes causing by surroundings or turn out routing failures in some cases when there are many traffic signals which generate empty streets temporary, or there is no merge roads after a road divide into two roads. When a node selects the next node simply using the distance to the destination node, the longer route is made by traditional greedy protocols in some cases and sometimes the route ends up routing failure. Most of traditional greedy protocols just take into account the distance to the destination to select a next node. Each node needs to consider not only the distance to the destination node but also the direction to the destination while routing a packet because of geographical environment. The proposed routing scheme considers both of the distance and the direction for forwarding packets to make a stable route. And the protocol can configure as the surrounding environment. We evaluate the performance of the protocol using two mobility models and network simulations. Most of network performances are improved rather than in compared with traditional greedy protocols.

Improved Intelligent Routing Protocol in Vehicle Ad-hoc Networks (차량 Ad-hoc 혹 통신에서 개선된 지능형 경로 프로토콜)

  • Lee, Dong Chun
    • Convergence Security Journal
    • /
    • v.21 no.1
    • /
    • pp.129-135
    • /
    • 2021
  • Greedy protocols show good performance in Vehicular Ad-hoc Networks (VANETs) environment in general. But they make longer routes causing by surroundings or turn out routing failures in some cases when there are many traffic signals which generate empty streets temporary, or there is no merge roads after a road divide into two roads. When a node selects the next node simply using the distance to the destination node, the longer route is made by traditional greedy protocols in some cases and sometimes the route ends up routing failure. Most of traditional greedy protocols just take into account the distance to the destination to select a next node. Each node needs to consider not only the distance to the destination node but also the direction to the destination while routing a packet because of geographical environment. The proposed routing scheme considers both of the distance and the direction for forwarding packets to make a stable route. And the protocol can configure as the surrounding environment. We evaluate the performance of the protocol using two mobility models and network simulations. Most of network performances are improved rather than in compared with traditional greedy protocols.

Adjuvant Radiotherapy Following Radical Hysterectomy and Bilateral Pelvic Lymph Node Dissection for the Uterine Cervical Cancer : Prognostic Factors and Failure Patterns (근칙적 절제술과 술후 방사선치료를 시행한 자궁경부암 환자의 치료성적, 예루인자와 실패양상)

  • Choi, Doo-Ho
    • Radiation Oncology Journal
    • /
    • v.15 no.4
    • /
    • pp.357-367
    • /
    • 1997
  • Purpose : To identify variable prognostic factors and analyse failure patterns in the uterine cervix cancer after radical operation and adjuvant radio-therapy, a retrospective analysis was undertaken. Materals and Methods : I analysed one hundred and twenty four patients with uterine cervix cancer, FIGO stage IB, IIA and IIB, treated with radical hysterectomy and pelvic lymph node dissection followed by adjuvant radio-therapy between May 1985 and May 1994. Minimum follow up period was 24 months. All of them were treated with full dose external radiotherapy with linear accelerator and/or high dese rate intracavitary radiation. Results : Overall 5 year survival rate and relapse free survival rate were $75.4\%,\;73.5\%$, respectively. Significant prognostic factors by relapse free survival were wall involvement thickness, lymph node location and number, parametrium involvement, tumor size, stage, uterine body involvement, vaginal resection margin involvement. By multivariate analysis, lymph node matastasis. tumor size and vaginal resection margin involvement were significant prognostic factos. Treatment related failure were 33 cases. Locoregional failure were more likely in the stage IIB, lymph node positive or vaginal resection margin positive patients whereas distant failures were relatively more frequent in stage IB, IIA and lymph node, vaginal resection negative patients. In stage IIB, 5 year relapse free survival rate was only $56\%$ and nine of twenty two patients recurred. Conculsion : Postoperative radiotherapy results are good for patients with relatively low risk factor. But the results are poor for patients with multiple, high risk factors or stage IIB. To control recurrence for patients with high risk factors, postoperative adjuvant radiotherapy is not sufficient treatment method. To raise control rate adding other methods such as radiosensitizing agent or chemotherapy is necessary and prospectively randomized study is needed for evaluation of postoperative radiotherapy efficacy and /or other methods. And it is reasonable to treat primary radical radiotherapy for patients with stage IIB cervical cancer instead of radical operation and adjuvant radiotherapy and/or chemotherapy regimen.

  • PDF

Modeling of RC shear walls strengthened by FRP composites

  • Sakr, Mohammed A.;El-khoriby, Saher R.;Khalifa, Tarek M.;Nagib, Mohammed T.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.3
    • /
    • pp.407-417
    • /
    • 2017
  • RC shear walls are considered one of the main lateral resisting members in buildings. In recent years, FRP has been widely utilized in order to strengthen and retrofit concrete structures. A number of experimental studies used CFRP sheets as an external bracing system for retrofitting of RC shear walls. It has been found that the common mode of failure is the debonding of the CFRP-concrete adhesive material. In this study, behavior of RC shear wall was investigated with three different micro models. The analysis included 2D model using plane stress element, 3D model using shell element and 3D model using solid element. To allow for the debonding mode of failure, the adhesive layer was modeled using cohesive surface-to-surface interaction model at 3D analysis model and node-to-node interaction method using Cartesian elastic-plastic connector element at 2D analysis model. The FE model results are validated comparing the experimental results in the literature. It is shown that the proposed FE model can predict the modes of failure due to debonding of CFRP and behavior of CFRP strengthened RC shear wall reasonably well. Additionally, using 2D plane stress model, many parameters on the behavior of the cohesive surfaces are investigated such as fracture energy, interfacial shear stress, partial bonding, proposed CFRP anchor location and using different bracing of CFRP strips. Using two anchors near end of each diagonal CFRP strips delay the end debonding and increase the ductility for RC shear walls.

Computer aided failure prediction of reinforced concrete beam

  • Islam, A.B.M. Saiful
    • Computers and Concrete
    • /
    • v.25 no.1
    • /
    • pp.67-73
    • /
    • 2020
  • Traditionally used analytical approach to predict the fatigue failure of reinforced concrete (RC) structure is generally conservative and has certain limitations. The nonlinear finite element method (FEM) offers less expensive solution for fatigue analysis with sufficient accuracy. However, the conventional implicit dynamic analysis is very expensive for high level computation. Whereas, an explicit dynamic analysis approach offers a computationally operative modelling to predict true responses of a structural element under periodic loading and might be perfectly matched to accomplish long life fatigue computations. Hence, this study simulates the fatigue behaviour of RC beams with finite element (FE) assemblage presenting a simplified explicit dynamic numerical solution to show computer aided fatigue behaviour of RC beam. A commercial FEM package, ABAQUS has been chosen for this complex modelling. The concrete has been modelled as a 8-node solid element providing competent compression hardening and tension stiffening. The steel reinforcements are simulated as two-node truss elements comprising elasto-plastic stress-strain behaviour. All the possible nonlinearities are duly incorporated. Time domain analysis has been adopted through an automatic Newmark-β time incremental technique. The program consists of twelve RC beams to visualize the real behaviour during fatigue process and to obtain the reliability of the study. Both the numerical and experimental results indicate a redistribution of stresses along the time and damage accumulation of beam which severely affect the serviceability and ultimate capacity of RC beam. The output of the FEM analysis demonstrates good match with the experimental consequences which affirm the efficacy of the computer aided model. The controlled fatigue damage evolution at service fatigue load limits makes the FE model an efficient tool in predicting high cycle fatigue behaviour of RC structures.

In Vitro Adenosine Triphosphate Based Chemotherapy Response Assay in Gastric Cancer

  • Park, Seul-Kee;Woo, Yang-Hee;Kim, Ho-Geun;Lee, Yong-Chan;Choi, Sung-Ho;Hyung, Woo-Jin;Noh, Sung-Hoon
    • Journal of Gastric Cancer
    • /
    • v.10 no.4
    • /
    • pp.155-161
    • /
    • 2010
  • Purpose: The purpose of this study was to investigate the reliability and the clinical applicability of the adenosine-triphosphate-based chemotherapy response assay (ATP-CRA) as a method of determining in vitro chemosensitivity in patients with gastric cancer. Materials and Methods: A total of 243 gastric cancer tissue samples were obtained from gastrectomies performed between February 2007 and January 2010. We evaluated the effectiveness of the ATP-CRA assay in determining the chemosensitivity of gastric cancer specimens using eleven chemotherapeutic agents - etoposide, doxorubicin, epirubicin, mytomicin, 5-fluorouracil, oxaliplatin, irinotecan, docetaxel, paclitaxel, methotraxate, and cisplatin - for chemosensitivity studies using ATP-CRA. We assessed the failure rate, the cell death rate, and the chemosensitivity index. Results: The failure rate of ATP-CRA was 1.6% (4/243). The mean coefficient of variation for triplicate ATP measurements was 6.5%. Etoposide showed the highest cell death rate (35.9%) while methotrexate showed the lowest (16.6%). The most active chemotherapeutic agent was etoposide, which most frequently ranked highest in the chemosensitivity test: 31.9% (51/160). Oxaliplatin was more active against early gastric cancers than advanced gastric cancers, whereas docetaxel was more active against advanced cancers. The lymph node negative group showed a significantly higher cell death rate than the lymph node positive group when treated with doxorubicin, epirubicin, and mitomycin. Conclusions: ATP-CRA is a stable and clinically applicable in vitro chemosensitivity test with a low failure rate. The clinical usefulness of ATP-CRA should be evaluated by prospective studies comparing the regimen guided by ATP-CRA with an empirical regimen.

QoS Guarantee in Partial Failure of Clustered VOD Server (클러스터 VOD 서버의 부분적 장애에서 QoS 보장)

  • Lee, Joa-Hyoung;Jung, In-Bum
    • The KIPS Transactions:PartC
    • /
    • v.16C no.3
    • /
    • pp.363-372
    • /
    • 2009
  • For large scale VOD service, cluster servers are spotlighted to their high performance and low cost. A cluster server usually consists of a front-end node and multiple back-end nodes. Though increasing the number of back-end nodes can result in the more QoS streams for clients, the possibility of failures in back-end nodes is proportionally increased. The failure causes not only the stop of all streaming service but also the loss of the current playing positions. In this paper, when a back-end node becomes a failed state, the recovery mechanisms are studied to support the unceasing streaming service. For the actual VOD service environment, we implement a cluster-based VOD servers composed of general PCs and adopt the parallel processing for MPEG movies. From the implemented VOD server, a video block recovery mechanism is designed on parity algorithms. However, without considering the architecture of cluster-based VOD server, the application of the basic technique causes the performance bottleneck of the internal network for recovery and also results in the inefficiency CPU usage of back-end nodes. To address these problems, we propose a new failure recovery mechanism based on the pipeline computing concept.

Design of Pipeline-based Failure Recovery Method for VOD Server (파이프라인 개념을 이용한 VOD 서버의 장애 복구 방법 연구)

  • Lee, Joa-Hyoung;Park, Chong-Myoung;Jung, In-Bum
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.5
    • /
    • pp.942-947
    • /
    • 2008
  • A cluster server usually consists of a front end node and multiple backend nodes. Though increasing the number of bookend nodes can result in the more QoS(Quality of Service) streams for clients, the possibility of failures in backend nodes is proportionally increased. The failure causes not only the stop of all streaming service but also the loss of the current playing positions. In this paper, when a backend node becomes a failed state, the recovery mechanisms are studied to support the unceasing streaming service. The basic techniques are hewn as providing very high speed data transfer rates suitable for the video streaming. However, without considering the architecture of cluster-based VOD server, the application of these basic techniques causes the performance bottleneck of the internal network for recovery and also results in the inefficiency CPU usage of backend nodes. To resolve these problems, we propose a new failure recovery mechanism based on the pipeline computing concept.

A Fault Tolerant Data Management Scheme for Healthcare Internet of Things in Fog Computing

  • Saeed, Waqar;Ahmad, Zulfiqar;Jehangiri, Ali Imran;Mohamed, Nader;Umar, Arif Iqbal;Ahmad, Jamil
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.1
    • /
    • pp.35-57
    • /
    • 2021
  • Fog computing aims to provide the solution of bandwidth, network latency and energy consumption problems of cloud computing. Likewise, management of data generated by healthcare IoT devices is one of the significant applications of fog computing. Huge amount of data is being generated by healthcare IoT devices and such types of data is required to be managed efficiently, with low latency, without failure, and with minimum energy consumption and low cost. Failures of task or node can cause more latency, maximum energy consumption and high cost. Thus, a failure free, cost efficient, and energy aware management and scheduling scheme for data generated by healthcare IoT devices not only improves the performance of the system but also saves the precious lives of patients because of due to minimum latency and provision of fault tolerance. Therefore, to address all such challenges with regard to data management and fault tolerance, we have presented a Fault Tolerant Data management (FTDM) scheme for healthcare IoT in fog computing. In FTDM, the data generated by healthcare IoT devices is efficiently organized and managed through well-defined components and steps. A two way fault-tolerant mechanism i.e., task-based fault-tolerance and node-based fault-tolerance, is provided in FTDM through which failure of tasks and nodes are managed. The paper considers energy consumption, execution cost, network usage, latency, and execution time as performance evaluation parameters. The simulation results show significantly improvements which are performed using iFogSim. Further, the simulation results show that the proposed FTDM strategy reduces energy consumption 3.97%, execution cost 5.09%, network usage 25.88%, latency 44.15% and execution time 48.89% as compared with existing Greedy Knapsack Scheduling (GKS) strategy. Moreover, it is worthwhile to mention that sometimes the patients are required to be treated remotely due to non-availability of facilities or due to some infectious diseases such as COVID-19. Thus, in such circumstances, the proposed strategy is significantly efficient.

Void-less Routing Protocol for Position Based Wireless Sensor Networks (위치기반 무선 센서 네트워크를 위한 보이드(void) 회피 라우팅 프로토콜)

  • Joshi, Gyanendra Prasad;JaeGal, Chan;Lee, Chae-Woo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.10
    • /
    • pp.29-39
    • /
    • 2008
  • Greedy routing which is easy to apply to geographic wireless sensor networks is frequently used. Greedy routing works well in dense networks whereas in sparse networks it may fail. When greedy routing fails, it needs a recovery algorithm to get out of the communication void. However, additional recovery algorithm causes problems that increase both the amount of packet transmission and energy consumption. Communication void is a condition where all neighbor nodes are further away from the destination than the node currently holding a packet and it therefore cannot forward a packet using greedy forwarding. Therefore we propose a VODUA(Virtually Ordered Distance Upgrade Algorithm) as a novel idea to improve and solve the problem of void. In VODUA, nodes exchange routing graphs that indicate information of connection among the nodes and if there exist a stuck node that cannot forward packets, it is terminated using Distance Cost(DC). In this study, we indicate that packets reach successfully their destination while avoiding void through upgrading of DC. We designed the VODUA algorithm to find valid routes through faster delivery and less energy consumption without requirement for an additional recovery algorithm. Moreover, by using VODUA, a network can be adapted rapidly to node's failure or topological change. This is because the algorithm utilizes information of single hop instead of topological information of entire network. Simulation results show that VODUA can deliver packets from source node to destination with shorter time and less hops than other pre-existing algorithms like GPSR and DUA.