• Title/Summary/Keyword: Node Failure

Search Result 400, Processing Time 0.031 seconds

Data Statical Analysis based Data Filtering Scheme for Monitoring System on Wireless Sensor Network (무선 센서 네트워크 모니터링 시스템을 위한 데이터 통계 분석 기반 데이터 필터링 기법)

  • Lee, Hyun-Jo;Choi, Young-Ho;Chang, Jae-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.3
    • /
    • pp.53-63
    • /
    • 2010
  • Recently, various monitoring systems are implemented actively by using wireless sensor networks(WSN). When implementing WSN-based monitoring system, there are three important issues to consider. At First, we need to consider a sensor node failure detection method to support the ongoing monitoring. Secondly, because sensor nodes use limited battery power, we need an efficient data filtering method to reduce energy consumption. At Last, a reducing processing overhead method is necessary. The existing Kalman filtering scheme has good performance on data filtering, but it causes too much processing overhead to estimate sensed data. To solve these problems, we, in this paper, propose a new data filtering scheme based on data statical analysis. First, the proposed scheme periodically aggregates node survival massages to support a node failure detection. Secondly, to reduce energy consumption, it sends the sample data with a node survival massage and do data filtering based on those messages. Finally, it analyzes the sample data to estimate filtering range in a server. As a result, each sensor node can use only simple compare operation for filtering data. In addition, we show from our performance analysis that the proposed scheme outperforms the Kalman filtering scheme in terms of the number of sending messages.

The Design and Implementation of RISE for Managing a Large Scale Cluster in Distributed Environment (분산 환경의 대규모 클러스터를 관리하기 위한 RISE 시스템의 설계 및 구현)

  • Park Doo-Sik;Yang Woo-Jin;Ban Min-Ho;Jeong Karp-Joo;Lee Jong-Hyun;Lee Sang-Moon;Lee Chang-Sung;Shin Soon-Churl;Lee In-Ho
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.7
    • /
    • pp.421-428
    • /
    • 2006
  • In this paper, the way of remote installation and back-up of 3-tier structure is introduced for efficient utilizing the cluster system resources distributed at several places. Recently, cluster system is constructed as the system of over hundreds nodes under complex network system mixed with public networks and private networks. Therefore, the as installation method suitable for the large scale cluster system and the remote recovery of failure nodes are important. However the previous researches which are based on 2-tier architecture may not provide the efficient cluster installation and image back-up method when the network of cluster system is composed of several private networks and public networks. In this paper, RISE (Remote Installation Service and Environment) based on the 3-tier architecture is proposed to solve this problem. In our approach, the managing node's role is divided into the global master node (GRISE) and the local master node (LRISE) to provide the efficient initial system deployment and remote failure recovery of distributed cluster system under the various network systems. Also, LRISE's availability is ensured under the complex network environments by adopting the auto-synchronization mechanism between GRISE and LRISE. In this work, a 64-node cluster system with gigabit network system is utilized for the experiment. From the experimental result, the system image with 1.86GB data can be obtained in 5 minutes and 53 seconds and the image-based installation of 64-node system can be carried out in 17 minutes and 53 seconds.

Reliable Real-Time Data Dissemination Protocol in Wireless Sensor Networks (무선 센서 망에서 신뢰적 실시간 데이터 전송 프로토콜)

  • Yang, Taehun;Yim, Yongbin;Jung, Kwansoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.8
    • /
    • pp.1567-1576
    • /
    • 2015
  • This paper proposes a reliable real-time data dissemination protocol for mitigating transmission failure of real-time data in WSNs. The re-transmission is well-known for recovery of transmission failure, but this may violate the real-time requirement by transmission delay. To solve this problem, the proposed protocol exploits broadcasting nature and temporal opportunity allocation. In a radio-range of sending node, there may be neighbors satisfying the real-time requirement. The neighbors of specific node could receive data simultaneously by broadcasting, and decide their priority using temporal opportunity allocation method. The method uses time slot and tolerable time. The time slot specifies the priority and transmission deadline for each neighbors, and the tolerable time is the real-time requirement at the sending node. By giving the priority to the node with shorter tolerable time in each slot, we may get more opportunities to forward toward the destination. In other words, even if a node have the longer tolerable time, it still has a chance to forward with the real-time requirement. Simulation results show that the proposed protocol is superior to the existing protocols.

Overlay Multicast for File Distribution using Virtual Sources (파일전송의 성능향상을 위한 다중 가상소스 응용계층 멀티캐스트)

  • Lee Soo-Jeon;Lee Dong-Man;Kang Kyung-Ran
    • Journal of KIISE:Information Networking
    • /
    • v.33 no.4
    • /
    • pp.289-298
    • /
    • 2006
  • Algorithms for application-level multicast often use trees to deliver data from the source to the multiple receivers. With the tree structure, the throughput experienced by the descendant nodes will be determined by the performance of the slowest ancestor node. Furthermore, the failure of an ancestor node results in the suspension of the session of all the descendant nodes. This paper focuses on the transmission of data using multiple virtual forwarders, and suggests a scheme to overcome the drawbacks of the plain tree-based application layer multicast schemes. The proposed scheme elects multiple forwarders other than the parent node of the delivery tree. A receiver receives data from the multiple forwarders as well as the parent node and it can increase the amount of receiving data per time unit. The multiple forwarder helps a receiver to reduce the impact of the failure of an ancestor node. The proposed scheme suggests the forwarder selection algorithm to avoid the receipt of duplicate packets. We implemented the proposed scheme using MACEDON which provides a development environment for application layer multicast. We compared the proposed scheme with Bullet by applying the implementation in PlanetLab which is a global overlay network. The evaluation results show that the proposed scheme enhanced the throughput by 20 % and reduced the control overhead over 90 % compared with Bullet.

Failure Detection and Resilience in HRing Overlay Network (HRing 오버레이 네트워크에서 실패 탐지 및 회복)

  • Gu, Tae-Wan;Lee, Kwang-Mo
    • Journal of Internet Computing and Services
    • /
    • v.8 no.5
    • /
    • pp.21-33
    • /
    • 2007
  • An overlay network is a virtual network which is constructed on top of a physical computer network. A node in the overlay network is connected through virtual or logical links, where each link corresponds to a path of the links in the underlying physical network. Overlay networks are suitable for sharing heterogeneous resources in distributed environments, However, overlay networks are limited for achieving reliable communication that failure detection in overlay networks is a very important issue. In this paper, we review conditions of conventional failure detection and propose a new approach to failure detection and resilience which can be applied to HRing (Hierarchical Ring) overlay networks. The proposed method consists of the failure detection and the failure resilience phases. Because it utilizes the characteristics of the HRing overlay network for failure detection, it can reduce unnecessary network traffic and provide better scalability and flexibility. We also analyzed and evaluated the performance of the proposed approach through simulations.

  • PDF

Development and application of a floor failure depth prediction system based on the WEKA platform

  • Lu, Yao;Bai, Liyang;Chen, Juntao;Tong, Weixin;Jiang, Zhe
    • Geomechanics and Engineering
    • /
    • v.23 no.1
    • /
    • pp.51-59
    • /
    • 2020
  • In this paper, the WEKA platform was used to mine and analyze measured data of floor failure depth and a prediction system of floor failure depth was developed with Java. Based on the standardization and discretization of 35-set measured data of floor failure depth in China, the grey correlation degree analysis on five factors affecting the floor failure depth was carried out. The correlation order from big to small is: mining depth, working face length, floor failure resistance, mining thickness, dip angle of coal seams. Naive Bayes model, neural network model and decision tree model were used for learning and training, and the accuracy of the confusion matrix, detailed accuracy and node error rate were analyzed. Finally, artificial neural network was concluded to be the optimal model. Based on Java language, a prediction system of floor failure depth was developed. With the easy operation in the system, the prediction from measured data and error analyses were performed for nine sets of data. The results show that the WEKA prediction formula has the smallest relative error and the best prediction effect. Besides, the applicability of WEKA prediction formula was analyzed. The results show that WEKA prediction has a better applicability under the coal seam mining depth of 110 m~550 m, dip angle of coal seams of 0°~15° and working face length of 30 m~135 m.

FTCARP: A Fault-Tolerant Routing Protocol for Cognitive Radio Ad Hoc Networks

  • Che-aron, Zamree;Abdalla, Aisha Hassan;Abdullah, Khaizuran;Rahman, Md. Arafatur
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.2
    • /
    • pp.371-388
    • /
    • 2014
  • Cognitive Radio (CR) has been recently proposed as a promising technology to remedy the problems of spectrum scarcity and spectrum underutilization by enabling unlicensed users to opportunistically utilize temporally unused licensed spectrums in a cautious manner. In Cognitive Radio Ad Hoc Networks (CRAHNs), data routing is one of the most challenging tasks since the channel availability and node mobility are unpredictable. Moreover, the network performance is severely degraded due to large numbers of path failures. In this paper, we propose the Fault-Tolerant Cognitive Ad-hoc Routing Protocol (FTCARP) to provide fast and efficient route recovery in presence of path failures during data delivery in CRAHNs. The protocol exploits the joint path and spectrum diversity to offer reliable communication and efficient spectrum usage over the networks. In the proposed protocol, a backup path is utilized in case a failure occurs over a primary transmission route. Different cause of a path failure will be handled by different route recovery mechanism. The protocol performance is compared with that of the Dual Diversity Cognitive Ad-hoc Routing Protocol (D2CARP). The simulation results obviously prove that FTCARP outperforms D2CARP in terms of throughput, packet loss, end-to-end delay and jitter in the high path-failure rate CRAHNs.

Neck Node Metastasis of Squamous Cell Carcinoma of the Tonsil (편도 편평세포암종의 경부림프절 전이)

  • Lee Sei-Young;Jung Sang-Ho;Rha Keung-Won;Kang Jae-Jung;Shim Jae-Han;Yang Woo-Ick;Lee Seung-Koo;Lee Chang-Geol;Choi Eun-Chang
    • Korean Journal of Head & Neck Oncology
    • /
    • v.20 no.2
    • /
    • pp.156-160
    • /
    • 2004
  • Background and Objectives: Neck metastasis is one of the most important prognostic factors in treating tonsillar cancer. Incidence and pattern of lymph node metastasis of tonsillar squamous cell carcinoma are the basic knowledge of treatment decision. Occult metastasis rate of tonsillar cancer and pattern of metastasis, failure pattern, survival were retrospectively analyzed. Patients and Methods: Seventy six patients who underwent surgery for tonsillar squamous cell carcinoma as an initial treatment from 1992 to 2004 were evaluated. Charts, imaging studies and pathologic reports were reviewed. Results: At the time of surgery, 78% of patients with tonsillar cancer had neck metastasis and 66% had multiple node metastasis. Occult neck metastasis was in 26%. There was high incidence of neck metastasis even in early stage of primary lesion. Conclusion: High incidence of lymph node metastasis was confirmed histopathologically in tonsillar cancer. All tonsillar cancer patients may need elective treatment of the neck. Tonsillar cancer had relatively good prognosis even though its neck metastasis rate is very high.

Robust Backup Path Selection in Overlay Routing with Bloom Filters

  • Zhou, Xiaolei;Guo, Deke;Chen, Tao;Luo, Xueshan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.8
    • /
    • pp.1890-1910
    • /
    • 2013
  • Routing overlay offers an ideal methodology to improve the end-to-end communication performance by deriving a backup path for any node pair. This paper focuses on a challenging issue of selecting a proper backup path to bypass the failures on the default path with high probability for any node pair. For existing backup path selection approaches, our trace-driven evaluation results demonstrate that the backup and default paths for any node pair overlap with high probability and hence usually fail simultaneously. Consequently, such approaches fail to derive a robust backup path that can take over in the presence of failure on the default path. In this paper, we propose a three-phase RBPS approach to identify a proper and robust backup path. It utilizes the traceroute probing approach to obtain the fine-grained topology information, and systematically employs the grid quorum system and the Bloom filter to reduce the resulting communication overhead. Two criteria, delay and fault-tolerant ability on average, of the backup path are proposed to evaluate the performance of our RBPS approach. Extensive trace-driven evaluations show that the fault-tolerant ability of the backup path can be improved by about 60%, while the delay gain ratio concentrated at 14% after replacing existing approaches with ours. Consequently, our approach can derive a more robust and available backup path for any node pair than existing approaches. This is more important than finding a backup path with the lowest delay compared to the default path for any node pair.

Handover Mobility Scenario Classification and Fast Handover Performance Analysis in NEMO Network (NEMO에서의 이동 시나리오 분류 및 빠른 핸드오버 성능 분석)

  • Choi, Seung-Joon;Su, Dong;Yoo, Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.11B
    • /
    • pp.987-996
    • /
    • 2006
  • In NEMO scenarios, mobile node's variety of movements and mobile router's point of attachment changes can result in handover. This handover process needs additional time to finish due to the multiple levels of indirection involved in NEMO. And the performance issues of mobile node's handover such as handover delay and packet loss in above cases haven't been studied thoroughly. So, in this paper, we define fast handover failure cases in hierarchical mobile IPv6 network based NEMO. We briefly described NEMO architecture and handover procedures of FMIPv6 and HMIPv6. And then, we classified mobile node or mobile router's movement pattern into several scenarios. Analysis for the fast handover classified NEMO scenarios, in terms of handover latency and packet delivery cost have been performed.