• Title/Summary/Keyword: Node Area

Search Result 854, Processing Time 0.031 seconds

Energy-Aware Configuration Management with Guaranteed Lifetime of Network in Multi-hop WBAN (무선 신체 망에서 망의 생존시간을 보장하는 에너지 인지 망 구성 관리 기법)

  • Seo, Su-Ho;Nah, Jae-Wook;Park, Jong-Tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10B
    • /
    • pp.981-987
    • /
    • 2009
  • Recently, the study on wireless body area network for providing ubiquitous healthcare services has been actively done, including the standardization of the IEEE and others. Wireless body area network is usually configured in tree format using multi-hop communication mode due to the power limitation and the characteristics of human body. In this case, differently from existing sensor network, the wireless body area network tends to be disconnected due to the frequent movement of human body. The number of connections which can be supported at each node has some limitations due to the constraint imposed on power consumption. In this paper, we have proposed a heuristic algorithm for optimal selection of parent node with guaranteed QoS for a disconnected node, which considers the priority on packet transmission. Simulation has been performed to evaluate the performance of the proposed algorithm.

Research on prefabricated concrete beam-column joint with high strength bolt-end plate

  • Shufeng, Li;Di, Zhao;Qingning, Li;Huajing, Zhao;Jiaolei, Zhang;Dawei, Yuan
    • Structural Engineering and Mechanics
    • /
    • v.74 no.3
    • /
    • pp.395-406
    • /
    • 2020
  • Many prefabricated concrete frame joints have been proposed, and most of them showed good seismic performance. However, there are still some limitations in the proposed fabricated joints. For example, for prefabricated prestressed concrete joints, prefabricated beams and prefabricated columns are assembled as a whole by the pre-stressed steel bar and steel strand in the beams, which brings some troubles to the construction, and the reinforcement in the core area of the joints is complex, and the mechanical mechanism is not clear. Based on the current research results, a new type of fabricated joint of prestressed concrete beams and confined concrete columns is proposed. To study the seismic performance of the joint, the quasi-static test is carried out. The test results show that the nodes exhibit good ductility and energy dissipation. According to the experimental fitting method and the "fixed point pointing" law, the resilience model of this kind of nodes is established, and compared with the experimental results, the two agree well, which can provides a certain reference for elasto-plastic seismic response analysis of this type of structure. Besides, based on the analysis of the factors affecting the shear capacity of the node core area, the formula of shear capacity of the core area of the node is proposed, and the theoretical values of the formula are consistent with the experimental value.

Improved Real-time Transmission Scheme using Temporal Gain in Wireless Sensor Networks (무선 센서 망에서 시간적 이득을 활용한 향상된 실시간 전송 방안)

  • Yang, Taehun;Cho, Hyunchong;Kim, Sangdae;Kim, Cheonyong;Kim, Sang-Ha
    • Journal of KIISE
    • /
    • v.44 no.10
    • /
    • pp.1062-1070
    • /
    • 2017
  • Real-time transmission studies in wireless sensor networks propose a mechanism that exploits a node that has a higher delivery speed than the desired delivery speed in order to satisfy real-time requirement. The desired delivery speed cannot guarantee real-time transmission in a congested area in which none of the nodes satisfy the requirement in one hop because the desired delivery speed is fixed until the packet reaches the sink. The feature of this mechanism means that the packet delivery speed increases more than the desired delivery speed as the packet approaches closer to the sink node. That is, the packet can reach the sink node earlier than the desired time. This paper proposes an improved real-time transmission by controlling the delivery speed using the temporal gain which occurs on the packet delivery process. Using the received data from a previous node, a sending node calculates the speed to select the next delivery node. The node then sends a packet to a node that has a higher delivery speed than the recalculated speed. Simulation results show that the proposed mechanism in terms of the real-time transmission success ratio is superior to the existing mechanisms.

A new Network Coordinator Node Design Selecting the Optimum Wireless Technology for Wireless Body Area Networks

  • Calhan, Ali;Atmaca, Sedat
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.5
    • /
    • pp.1077-1093
    • /
    • 2013
  • This paper proposes a new network coordinator node design to select the most suitable wireless technology for WBANs by using fuzzy logic. Its goal is to select a wireless communication technology available considering the user/application requirements and network conditions. A WBAN is composed of a set of sensors placed in, on, or around human body, which monitors the human body functions and the surrounding environment. In an effort to send sensor readings from human body to medical center or a station, a WBAN needs to stay connected to a local or a wide area network by using various wireless communication technologies. Nowadays, several wireless networking technologies may be utilized in WLANs and/or WANs each of which is capable of sending WBAN sensor readings to the desired destination. Therefore, choosing the best serving wireless communications technology has critical importance to provide quality of service support and cost efficient connections for WBAN users. In this work, we have developed, modeled, and simulated some networking scenarios utilizing our fuzzy logic-based NCN by using OPNET and MATLAB. Besides, we have compared our proposed fuzzy logic based algorithm with widely used RSSI-based AP selection algorithm. The results obtained from the simulations show that the proposed approach provides appropriate outcomes for both the WBAN users and the overall network.

A CLB based CPLD Low-power Technology Mapping Algorithm consider Area and Delay time (면적과 지연 시간을 고려한 CLB 구조의 CPLD 저전력 기술 매핑 알고리즘)

  • 김재진;조남경;전종식;김희석
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.1169-1172
    • /
    • 2003
  • In this paper, a CLB-based CPLD low-power technology mapping algorithm consider area and delay time is proposed. To perform low power technology mapping for CPLD, a given Boolean network have to be represented to DAG. The proposed algorithm are consist of three step. In the first step, TD(Transition Density) calculation have to be performed. In the second step, the feasible clusters are generated by considering the following conditions: the number of output, the number of input and the number of OR-terms for CLB(Common Logic Block) within a CPLD. The common node cluster merging method, the node separation method, and the node duplication method are used to produce the feasible clusters. In the final step, low power technology mapping based on the CLBs is packing the feasible clusters into the several proper CLBs. The proposed algorithm is examined by using benchmarks in SIS. In the case of that the number of OR-terms is 5, the experiments results show that reduce the power consumption by 30.73% comparing with that of TEMPLA, and 17.11% comparing with that of PLAmap respectively.

  • PDF

A Real-Time Localization Platform Design in WUSB Services based on IEEE 802.15.6 WBAN Protocol for Wearable Computer Systems (IEEE 802.15.6 표준 기반 무선 USB 서비스를 위한 실시간 위치인식 플랫폼 설계)

  • Hur, Kyeong;Sohn, Won-Sung
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.7
    • /
    • pp.885-890
    • /
    • 2012
  • In this Paper, we propose a Real-Time Localization Platform Built on WUSB (Wireless USB) over WBAN (Wireless Body Area Networks) protocol required for Wearable Computer systems. Proposed Real-Time Localization Platform Technique is executed on the basis of WUSB over WBAN protocol at each sensor node comprising peripherals of a wearable computer system. In the Platform, a WUSB host calculates the location of a receiving sensor node by using the difference between the times at which the sensor node received different WBAN beacon frames sent from the WUSB host. And the WUSB host interprets motion of the virtual object.

A multi-radio sink node designed for wireless SHM applications

  • Yuan, Shenfang;Wang, Zilong;Qiu, Lei;Wang, Yang;Liu, Menglong
    • Smart Structures and Systems
    • /
    • v.11 no.3
    • /
    • pp.261-282
    • /
    • 2013
  • Structural health monitoring (SHM) is an application area of Wireless Sensor Networks (WSNs) which usually needs high data communication rate to transfer a large amount of monitoring data. Traditional sink node can only process data from one communication channel at the same time because of the single radio chip structure. The sink node constitutes a bottleneck for constructing a high data rate SHM application giving rise to a long data transfer time. Multi-channel communication has been proved to be an efficient method to improve the data throughput by enabling parallel transmissions among different frequency channels. This paper proposes an 8-radio integrated sink node design method based on Field Programmable Gate Array (FPGA) and the time synchronization mechanism for the multi-channel network based on the proposed sink node. Three experiments have been performed to evaluate the data transfer ability of the developed multi-radio sink node and the performance of the time synchronization mechanism. A high data throughput of 1020Kbps of the developed sink node has been proved by experiments using IEEE.805.15.4.

IP Paging with an Adaptive Active Timer in Mobile IPv6 (Mobile IPv6상에서 적응적 액티브 타이머를 고려한 IP 페이징)

  • 이보경
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.5
    • /
    • pp.482-489
    • /
    • 2004
  • Paging extensions for Mobile IP was proposed to avoid unnecessary registration signaling overhead of Mobile IP. In order to support the paging function in Mobile IP, the slates of a mobile node arc divided into active on, active off, idle. The active on state means when any incoming or outgoing data session arrives to a mobile node. After data session is completed, the state of the motile node is changed into active off from active on. At this moment, the active timer starts to be operated. If the active timer expires, the mobile node moves to idle state. If a mobile node has very frequently data sessions at the same cell, the mobile node is better to move slowly into idle state. The other way, if the mobile node very frequently moves into new cell area and receives or sends little data, the mobile node is better to move earlier into idle state. In this raper, the active timer is adaptively set by the mobile nodes traffic and mobility characteristics and the paging scheme using this active timer is proposed to reduce the location registration cost.

A Logistic Model Including Risk Factors for Lymph Node Metastasis Can Improve the Accuracy of Magnetic Resonance Imaging Diagnosis of Rectal Cancer

  • Ogawa, Shimpei;Itabashi, Michio;Hirosawa, Tomoichiro;Hashimoto, Takuzo;Bamba, Yoshiko;Kameoka, Shingo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.2
    • /
    • pp.707-712
    • /
    • 2015
  • Background: To evaluate use of magnetic resonance imaging (MRI) and a logistic model including risk factors for lymph node metastasis for improved diagnosis. Materials and Methods: The subjects were 176 patients with rectal cancer who underwent preoperative MRI. The longest lymph node diameter was measured and a cut-off value for positive lymph node metastasis was established based on a receiver operating characteristic (ROC) curve. A logistic model was constructed based on MRI findings and risk factors for lymph node metastasis extracted from logistic-regression analysis. The diagnostic capabilities of MRI alone and those of the logistic model were compared using the area under the curve (AUC) of the ROC curve. Results: The cut-off value was a diameter of 5.47 mm. Diagnosis using MRI had an accuracy of 65.9%, sensitivity 73.5%, specificity 61.3%, positive predictive value (PPV) 62.9%, and negative predictive value (NPV) 72.2% [AUC: 0.6739 (95%CI: 0.6016-0.7388)]. Age (<59) (p=0.0163), pT (T3+T4) (p=0.0001), and BMI (<23.5) (p=0.0003) were extracted as independent risk factors for lymph node metastasis. Diagnosis using MRI with the logistic model had an accuracy of 75.0%, sensitivity 72.3%, specificity 77.4%, PPV 74.1%, and NPV 75.8% [AUC: 0.7853 (95%CI: 0.7098-0.8454)], showing a significantly improved diagnostic capacity using the logistic model (p=0.0002). Conclusions: A logistic model including risk factors for lymph node metastasis can improve the accuracy of MRI diagnosis of rectal cancer.

A Node Positioning Method for Minimizing the Overlap of Sensing Areas in Wireless Sensor Networks with Adjustable Sensing Ranges (가변 감지영역을 갖는 센서노드로 구성된 무선 센서 네트워크에서 중첩영역 최소를 위한 노드의 위치 결정방법)

  • Seong, Ki-Taek;Song, Bong-Gi;Woo, Chong-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.1
    • /
    • pp.10-18
    • /
    • 2007
  • In this paper, we address the node positioning method for minimizing the overlap sensing areas in wireless sensor networks with adjustable sensing ranges. To find a optimal node position, we derive a optimal equations by using the overlapped areas, each node's radiuses and expended angles of opposite neighboring nodes. Based on it, we devise a new node positioning method, called as ASRC(Adjustable Sensing Ranges Control). Unlike existing condition based model, our proposed method is derived from mathematical formula, and we confirm its validity through various simulations.