• 제목/요약/키워드: Nodal method

검색결과 521건 처리시간 0.022초

가상제약조건에 의한 비최적 현재운전계통의 모선가격산정 (Calculation of Nodal Price for Nonoptimal System by Imaginary Constraint Condition)

  • 김용하;이범;최상규;이성준;이재걸;오석현;김미예
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.50-53
    • /
    • 2003
  • This Paper proposes the new method of Nodal Price calculation on nonoptimal condition of power system. It uses Power Flow instead of Optimal Power Flow. We propose a idea of imaginary constraints at the first. And the proposed method is applied to IEEE-30 and results show the effectiveness of the method.

  • PDF

강건 절점위치 유한요소법을 이용한 수중 예인 케이블의 비선형 거동해석 (Nonlinear Analysis of Underwater Towed Cable Using Robust Nodal Position Finite Element Method)

  • 이은택;고광수;안형택;김성일;천승용;김정석;이병희
    • 대한조선학회논문집
    • /
    • 제53권5호
    • /
    • pp.388-399
    • /
    • 2016
  • A motion analysis of an underwater towed cable is a complex task due to its nonlinear nature of the problem. The major source of the nonlinearity of the underwater cable analysis is that the motion of the cable involves large rigid-body motion. This large rigid-body motion makes difficult to use standard displacement-based finite element method. In this paper, the authors apply recently developed nodal position-based finite element method which can deal with the geometric nonlinearity due to the large rigid-body motion. In order to enhance the stability of the large-scale nonlinear cable motion simulation, an efficient time-integration scheme is proposed, namely predictor/multi-corrector Newmark scheme. Three different predictors are introduced, and the best predictor in terms of stability and robustness for impulsive cable motion analysis is proposed. As a result, the nonlinear motion of underwater cable is predicted in a very efficient manner compared to the classical finite element of finite difference methods. The efficacy of the method is demonstrated with several test cases, involving static and dynamic motion of a single cable element, and also under water towed cable composed of multiple cable elements.

전달 강성계수법에 의한 격자형 구조물의 자유 진동 해석 (Free Vibration Analysis of Lattice Type Structure by Transfer Stiffness Coefficient Method)

  • 문덕홍;최명수;강화중
    • 소음진동
    • /
    • 제8권2호
    • /
    • pp.361-368
    • /
    • 1998
  • Complex and large lattice type structures are frequently used in design of bridge, tower, crane and aerospace structures. In general, in order to analyze these structures we have used the finite element method(FEM). This method is the most widely used and powerful tool for structural analysis. However, it is necessary to use a large amount of computer memory and computation time because the FEM resuires many degrees of freedom for solving dynamic problems exactly for these complex and large structures. For overcoming this problem, the authors developed the transfer stiffness coefficient method(TSCM). This method is based on the concept of the transfer of the nodal dynamic stiffness coefficient which is related to force and displacement vector at each node. In this paper, the authors formulate vibration analysis algorithm for a complex and large lattice type structure using the transfer of the nodal dynamic stiffness coefficient. And we confirmed the validity of TSCM through numerical computational and experimental results for a lattice type structure.

  • PDF

전달강성계수법에 의한 격자형 구조물의 강제진동 해석 (Forced Vibration Analysis of Lattice Type Structure by Transfer Stiffness Coefficient Method)

  • 문덕홍;최명수
    • 소음진동
    • /
    • 제8권5호
    • /
    • pp.949-956
    • /
    • 1998
  • Complex and large lattice type structures are frequently used in design of bridge, tower, crane and aerospace structures. In general, in order to analyze these structures we have used the finite element method(FEM). This method is the most widely used and powerful method for structural analysis lately. However, it is necessary to use a large amount of computer memory and computational time because the FEM requires many degrees of freedom for solving dynamic problems exactly for these complex and large structures. For analyzing these structures on a personal computer, the authors developed the transfer stiffness coefficient method(TSCM). This method is based on the concept of the transfer of the nodal dynamic stiffness coefficient matrix which is related to force and displacement vector at each node. And we suggested TSCM for free vibration analysis of complex and large lattice type structures in the previous report. In this paper, we formulate forced vibration analysis algorithm for complex and large lattice type structures using extened TSCM. And we confirmed the validity of TSCM through computational results by the FEM and TSCM, and experimental results for lattice type structures with harmonic excitation.

  • PDF

Development of FAMD Code to Calculate the Fluid Added Mass and Damping of Arbitrary Structures Submerged in Confined Viscous Fluid

  • Koo, Gyeong-Hoi;Lee, Jae-Han
    • Journal of Mechanical Science and Technology
    • /
    • 제17권3호
    • /
    • pp.457-466
    • /
    • 2003
  • In this paper, the numerical finite element formulations were derived for the linearized Navier-Stokes' equations with assumptions of two-dimensional incompressible, homogeneous viscous fluid field, and small oscillation and the FAMD (Fluid Added Mass and Damping) code was developed for practical applications calculating the fluid added mass and damping. In formulations, a fluid domain is discretized with C$\^$0/-type quadratic quadrilateral elements containing eight nodes using a mixed interpolation method, i.e., the interpolation function for the velocity variable is approximated by a quadratic function based on all eight nodal points and the interpolation function for the pressure variable is approximated by a linear function based on the four nodal points at vertices. Using the developed code, the various characteristics of the fluid added mass and damping are investigated for the concentric cylindrical shell and the actual hexagon arrays of the liquid metal reactor cores.

비정규 격자를 이용한 3차원 Cavity 유동 해석 (Analysis of Three-dimensional Cavity flow by using Unstructred grid)

  • 강효길;김문찬;전호환
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 추계학술대회 논문집
    • /
    • pp.192-197
    • /
    • 2003
  • Three-dimensional cavity flow is analyzed with the code by using unstructured grid. Incompressible Navier-Stokes equations are used as governing equations, and governing equations are discretized by Finite Volume Method. Artificial compressibility method, proposed by Chorin, and developed by Soh, is used for coupling a pressure and a velocity. Cell-centered scheme is adopted in the code, this has the effect of having denser grid than nodal scheme when the same grid is used. Weighted Averaging scheme is used for the value at a nodal point. Cavity flow is analyzed, and this computed results are compared with the results in the research report

  • PDF

송풍기 임펠러의 순환대칭성을 이용한 고유치해석 (Eigenvalue Analysis of a Blower Impeller Using Cyclic Symmetry)

  • 김창부;안영철
    • 소음진동
    • /
    • 제10권3호
    • /
    • pp.523-530
    • /
    • 2000
  • In this paper we present an efficient method for finite element vibration analysis of a structure with cyclic symmetry and applied it to calculating the natural vibration characteristics for a blower impeller. Blower impeller having a cyclically symmetric structure is composed of circumferentially repeated substructures., The whole-structure is partitioned into substructures and then finite element vibration analysis is performed for a substructure using transformed equations for each number of nodal diameter which are derived from discrete Fourier transform in consideration of the cyclic symmetry. natural vibration characteristics for three kinds of models which are blower impeller without support ring with small support ring and with large support ring are numerically analyzed and compared. Accuracy and efficiency of the present method are verified by comparison of results of the analysis with substructure and with whole-structure. Also the results of the analysis by cyclic symmetry module(SOL 115) of MSC/NASTRAN are presented and compared.

  • PDF

유한요소법에 의한 전단가공 금형의 마멸예측 (Prediction of Tool Wear in Shearing Process by the Finite Element Method)

  • 고대철;김병민
    • 한국정밀공학회지
    • /
    • 제16권1호통권94호
    • /
    • pp.174-181
    • /
    • 1999
  • In this paper the technique to predict tool wear theoretically in shearing process is suggested. The tool wear in the process affects the tolerances of final pans, metal flows and costs of processes. In order to predict the tool wear the deformation of workpiece during the process is analyzed by using non-isothermal finite element program. The ductile fracture criterion and the element kill method are also used to estimate if and where a fracture will occur and to investigate the features of the sheared surface in shearing process. Results obtained from finite element simulation, such as nodal velocities and nodal forces, are transformed into sliding velocity and normal pressure on tool monitoring points respectively. The monitoring points are automatically generated and the wear rates on these points are accumulated during the process. It is assumed that the wear depth on the tool surface is linear function of the lot sizes based upon the known experimental results. The influence of clearance between die and punch upon tool wear is also discussed.

  • PDF

고속전철 집전시스템의 동역학 해석에 관한 연구(II. 집전시스템 통합 해석) (Dynamic Analysis of a Pantograph-Catenary System for High-Speed Train(II. Analysis of the Integrated Current Collection System))

  • 서종휘;목진용;정일호;박태원;김영국;김석원
    • 한국정밀공학회지
    • /
    • 제22권1호
    • /
    • pp.160-166
    • /
    • 2005
  • In this paper, the combined system equation of motion, which can analyze the dynamic interaction between pantograph and catenary system, is derived by adopting absolute nodal coordinates and rigid body coordinates. The analysis results are compared with real experiment data from test running of Korean high-speed train (HSR 350x). In addition, a computation method for the dynamic stress of contact wire is presented using the derived system equation of motion. This method might be good example and significant in that the structural and multibody dynamics model can be unified into one numerical system.

(4+n)-noded Moving Least Square(MLS)-based finite elements for mesh gradation

  • Lim, Jae Hyuk;Im, Seyoung
    • Structural Engineering and Mechanics
    • /
    • 제25권1호
    • /
    • pp.91-106
    • /
    • 2007
  • A new class of finite elements is described for dealing with mesh gradation. The approach employs the moving least square (MLS) scheme to devise a class of elements with an arbitrary number of nodal points on the parental domain. This approach generally leads to elements with rational shape functions, which significantly extends the function space of the conventional finite element method. With a special choice of the nodal points and the base functions, the method results in useful elements with polynomial shape functions for which the $C^1$ continuity breaks down across the boundaries between the subdomains comprising one element. Among those, (4 + n)-noded MLS based finite elements possess the generality to be connected with an arbitrary number of linear elements at a side of a given element. It enables us to connect one finite element with a few finite elements without complex remeshing. The effectiveness of the new elements is demonstrated via appropriate numerical examples.