• Title/Summary/Keyword: Nodal correction

Search Result 17, Processing Time 0.032 seconds

Improved nodal equivalence with leakage-corrected cross sections and discontinuity factors for PWR depletion analysis

  • Lee, Kyunghoon;Kim, Woosong;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1195-1208
    • /
    • 2019
  • This paper introduces a new two-step procedure for PWR depletion analyses. This procedure adopts the albedo-corrected parameterized equivalence constants (APEC) method to correct the lattice-based raw cross sections (XSs) and discontinuity factors (DFs) by accounting for neutron leakage. The intrinsic limitations of the conventional two-step methods are discussed by analyzing a 2-dimensional SMR with the commercial DeCART2D/MASTER code system. For a full-scope development of the APEC correction, the MASTER nodal code was modified so that the group constants can be corrected in the middle of a microscopic core depletion. The basic APEC methodology is described and color-set problems are defined to determine the APEC functions for burnup-dependent XS and DF corrections. Then the new two-step method was applied to depletion analyses of the SMR without thermal feedback, and its validity was evaluated in terms of being able to predict accurately the reactor eigenvalue and nodal power profile. In addition, four variants of the original SMR core were also analyzed for a further evaluation of the APEC-assisted depletion. In this work, several combinations of the burnup-dependent and -independent XS and DF corrections were also considered. The results show that the APEC method could enhance the nodal equivalence significantly with inexpensive additional costs.

Analysis on the estimation errors of the lowest and highest astronomical tides for the southwestern 2.5 GW offshore wind farm, Korea

  • Ko, Dong Hui;Jeong, Shin Taek;Cho, Hong-Yeon;Kang, Keum-Seok
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.1
    • /
    • pp.85-94
    • /
    • 2018
  • For the design of wind-power facilities, the highest and lowest astronomical tides (HAT and LAT, respectively) are needed for the tidal-water levels regarding international designs; however, the approximate highest high water and approximate lowest low water AHHW and ALLW, respectively, have been used in Korea. The HAT and LAT in the wind-farm test-bed sea should be estimated to satisfy the international standard. In this study, the HAT and LAT are therefore estimated using the hourly tidal-elevation data of the Eocheongdo, Anmado, Younggwang, Gunsan, Janghang, and Seocheon tidal-gauging stations that are located in the adjacent coastal sea. The nodal variation patterns of the major lunar components, such as $M_2$, $O_1$, and $K_1$ are analyzed to check the expected long-term lunar cycle, i.e., 18.61 year's nodal-variation patterns. The temporal amplitude variations of the $M_2$, $O_1$, and $K_1$ clearly show the 18.61-years periodic patterns in the case of the no-nodal correction condition. In addition, the suggested HAT and LAT elevations, estimated as the upper and lower confidence limits of the yearly HAT and LAT elevations, are 50 cm greater than the AHHW and 40 cm lower than the ALLW, respectively.

Analysis on the Estimation Error of the Lowest and Highest Astronomical Tides using the Wido Tidal Elevation Data (위도 검조자료를 이용한 최저-최고 천문조위 추정 오차 분석)

  • Jeong, Shin Taek;Yoon, Jong Tae;Cho, Hongyeon;Ko, Dong Hui;Kang, Keum Seok
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.2
    • /
    • pp.101-108
    • /
    • 2016
  • In designing of the wind power facilities, the highest and lowest astronomical tides (HAT and LAT) are needed in terms of an international design tidal water levels. The AHHW and ALLW, however, have been used as the design tidal levels in Korea. The HAT and LAT in the Wido coastal sea should be estimated to satisfy the standard because the pilot wind power facilities will be located in the adjacent Wido coastal sea. In this study, the HAT and LAT are estimated using the 31-years hourly tidal elevation data of the Wido tidal gauging station and the nodal variation patterns of the major lunar components, such as $M_2$, $O_1$, and $K_1$, are analysed to check the expected long-term lunar cycle, i.e., 18.61-year's nodal variation patterns. The temporal amplitude variations of the $M_2$, $O_1$, and $K_1$ clearly show the 18.61-years periodic patterns in case of the no-nodal correction condition. In addition, the suggested HAT and LAT elevations, estimated as the upper and lower confidence limits of the yearly HAT and LAT elevations, show 40 cm greater than AHHW and 35 cm lower than ALLW, respectively.

A New Approach for the Solution of Multi-Dimensional Neutron Kinetics Equations in LWR's (경수로에 대한 다차원 노심 동특성 방정식의 해를 구하기 위한 새로운 방법 개발)

  • Song, Jae-Woong;Kim, Jong-Kyung
    • Nuclear Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.252-262
    • /
    • 1992
  • The intent of this study is to develop an efficient calculation method which can be used to analyze the heterogeneous time-dependent reactor problems. By using the nodal theory one can not only reduce the calculational efforts, but accurately determine the group dependent flux densities averaged over the entire homogeneous nodes. This method uses correction factors(called“discontinuity factors”) in a rigorous manner to obtain the relationship between the node-averaged flux and the surface-averaged fluxes and currents. The discontinuity factors are calculated from the node-averaged fluxes, diffusion coefficients, and the discontinuity factors of the previous time step. The test results for two benchmark problems demonstrate the accuracy and efficiency of the method developed for the transient application in which assembly-size nodes can be used.

  • PDF

Overview of Tidal Phase-lag References Used in Korea (우리나라 조석지각 기준 표기에 대한 고찰)

  • Byun, Do-Seong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.3
    • /
    • pp.234-238
    • /
    • 2007
  • Three different tidal phase-lag references have been used by the tidal research community of Korea: Greek kappa (k), Local standard time zone ($135^{\circ}E$) phase-lag (g) and Greenwich phase-lag (G). This ununified tidal information system may induce confusion in understanding tidal characteristics and their variability and impede the development of tidal knowledge in Korea. In this study we closely explore the three phase-lag reference definition with respect to their mutual conversion. We also identify an incorrect phase-lag reference definition used in previous works and discuss what has led to this misunderstanding.

Investigation and Processing of Seismic Reflection Data Collected from a Water-Land Area Using a Land Nodal Airgun System (수륙 경계지역에서 얻어진 육상 노달 에어건 탄성파탐사 자료의 고찰 및 자료처리)

  • Lee, Donghoon;Jang, Seonghyung;Kang, Nyeonkeon;Kim, Hyun-do;Kim, Kwansoo;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.603-620
    • /
    • 2021
  • A land nodal seismic system was employed to acquire seismic reflection data using stand-alone cable-free receivers in a land-river area. Acquiring reliable data using this technology is very cost effective, as it avoids topographic problems in the deployment and collection of receivers. The land nodal airgun system deployed on the mouth of the Hyungsan River (in Pohang, Gyeongsangbuk Province) used airgun sources in the river and receivers on the riverbank, with subparallel source and receiver lines, approximately 120 m-spaced. Seismic data collected on the riverbank are characterized by a low signal-to-noise (S/N) and inconsistent reflection events. Most of the events are represented by hyperbola in the field records, including direct waves, guided waves, air waves, and Scholte surface waves, in contrast to the straight lines in the data collected conventionally where source and receiver lines are coincident. The processing strategy included enhancing the signal behind the low-frequency large-amplitude noise with a cascaded application of bandpass and f-k filters for the attenuation of air waves. Static time delays caused by the cross-offset distance between sources and receivers are corrected, with a focus on mapping the shallow reflections obscured by guided wave and air wave noise. A new time-distance equation and curve for direct and air waves are suggested for the correction of the static time delay caused by the cross-offset between source and receiver. Investigation of the minimum cross-offset gathers shows well-aligned shallow reflections around 200 ms after time-shift correction. This time-delay static correction based on the direct wave is found essential to improving the data from parallel source and receiver lines. Data acquisition and processing strategies developed in this study for land nodal airgun seismic systems will be readily applicable to seismic data from land-sea areas when high-resolution signal data becomes available in the future for investigation of shallow gas reservoirs, faults, and engineering designs for the development of coastal areas.

Conservative Neck Dissection in Oral Cancer Patients: a 5 Year Retrospective Study in Malaysia

  • Balasundram, Sathesh;Mustafa, Wan Mahadzir Wan;Ip, Jolene;Adnan, Tassha Hilda;Supramaniam, Premaa
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.4045-4050
    • /
    • 2012
  • Objective: The impact of ablative oral cancer surgery was studied, with particular reference to recurrence and nodal metastasis, to assess survival probability and prognostic indicators and to elucidate if ethnicity influences the survival of patients. Methods: Patients who underwent major ablative surgery of the head and neck region with neck dissection were identified and clinical records were assessed. Inclusion criteria were stage I-IV oral and oropharyngeal malignancies necessitating resection with or without radiotherapy from 2004 to 2009. All individuals had a pre-operative assessment prior to the surgery. The post operative assessment period ranged from 1 year to 5 years. Survival distributions were analyzed using Kaplan-Meier curves. Results: 87 patients (males:38%; females:62%) were included in this study, with an age range of 21-85 years. Some 78% underwent neck dissections while 63% had surgery and radiotherapy. Nodal recurrence was detected in 5.7% while 20.5% had primary site recurrence within the study period. Kaplan-Meier survival analysis revealed that the median survival time was 57 months. One year overall survival (OS) rate was 72.7% and three year overall survival rate dropped to 61.5%. On OS analysis, the log-rank test showed a significant difference of survival between Malay and Chinese patients (Bonferroni correction p=0.033). Recurrence-free survival (RFS) analysis revealed that 25% of the patients have reached the event of recurrence at 46 months. One year RFS rate was 85.2% and the three year survival rate was 76.1%. In the RFS analysis, the log-rank test showed a significant difference in the event of recurrence and nodal metastasis (p<0.001). Conclusion: Conservative neck is effective, in conjunction with postoperative radiotherapy, for control of neck metastases. Ethnicity appears to influence the survival of the patients, but a prospective trial is required to validate this.

THERMAL MODELING TECHNIQUE FOR A SATELLITE IMAGER (인공위성 영상기의 열모델링 방법)

  • Kim, Jung-Hoon;Jun, Hyoung-Yoll;Yu, Myoung-Jong;Kim, Byoung-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.174-180
    • /
    • 2010
  • Conductive and radiative thermal model configurations of an imager of a geostationary satellite are presented. A two-plane method is introduced for three dimensional conductive coupling which is not able to be treated by thin shell plate thermal modeling technique. Especially the two-plane method is applied to massive matters and PIP(Payload Interface Plate) in the imager model. Some massive matters in the thermal model are modified by adequate correction factors or equivalent thickness in order to obtain the numerical results of thermal modeling to be consistent with the analytic model. More detailed nodal breakdown is specially employed to the object which has the rapid temperature gradient expected by a rule of thumb. This detailed thermal model of the imager is supposed to be used for detailed analyses and test predictions, and be correlated with the thermal vacuum test results before final in-flight predictions.

  • PDF

THERMAL MODELING TECHNIQUE FOR GEOSTATIONARY OCEAN COLOR IMAGER (정지위성 해색 촬영기의 열모델링 기술)

  • Kim, Jung-Hoon;Jun, Hyoung-Yoll;Han, Cho-Young;Kim, Byoung-Soo
    • Journal of computational fluids engineering
    • /
    • v.15 no.2
    • /
    • pp.28-34
    • /
    • 2010
  • Conductive and radiative thermal model configurations of an imager of a geostationary satellite are presented. A two-plane method is introduced for three dimensional conductive coupling which is not able to be treated by thin shell plate thermal modeling technique. Especially the two-plane method is applied to massive matters and PIP(Payload Interface Plate) in the imager model. Some massive matters in the thermal model are modified by adequate correction factors or equivalent thickness in order to obtain the numerical results of thermal modeling to be consistent with the analytic model. More detailed nodal breakdown is specially employed to the object which has the rapid temperature gradient expected by a rule of thumb. This detailed thermal model of the imager is supposed to be used for analyses and test predictions, and be correlated with the thermal vacuum test results before final in-flight predictions.