• 제목/요약/키워드: Nodal Body

검색결과 67건 처리시간 0.021초

절대절점좌표를 이용한 탄성 다물체동역학 해석에서의 동응력 이력 계산에 관한 연구 (Computation of Dynamic Stress in Flexible Multi-body Dynamics Using Absolute Nodal Coordinate Formulation)

  • 서종휘;정일호;박태원
    • 한국정밀공학회지
    • /
    • 제21권5호
    • /
    • pp.114-121
    • /
    • 2004
  • Recently, the finite element absolute nodal coordinate formulation (ANCF) was developed for the large deformation analysis of flexible bodies in multi-body dynamics. This formulation is based on the finite element procedures and the general continuum mechanics theory to represent the elastic forces. In this paper, a computation method of dynamic stress in flexible multi-body dynamics using absolute nodal coordinate formulation is proposed. Numerical examples, based on an Euler-Bernoulli beam theory, are shown to verify the efficiency of the proposed method. This method can be applied for predicting the fatigue life of a mechanical system. Moreover, this study demonstrates that structural and multi-body dynamic models can be unified in one numerical system.

비대칭 하중을 받고 비대칭 변위가 주어진 축대칭 물체의 응력해석에 관한 연구 (A Study on the Stress Analysis ofAxi-symetric Body with N on-symetric Load and N on-symetric Given Displacements)

  • 전효중;왕지석;최순열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제14권4호
    • /
    • pp.46-56
    • /
    • 1990
  • Stress analysis of axi-symetric body with non-symetric loading and non-symetric given displacements is investigated in this paper using the finite element method. As the non-symetric load and non-symetric given displacements of axi-symetric body are generally periodic functions of angle .theta., the nodal forces and nodal displacements can be expanded in cosine and sine series, that is, Fourier series. Furthermore, using Euler's formula, the cosine and sine series can be converted into exponential series and it is prooved that the related calculus become more clear. Substituting the nodal displacements expanded in Fourier series into the strain components of cylindrical coordinates system, the element strains are expressed in series form and by the principal of virtual work, the element stiffness martix and element load vector are obtained for each order. It is also showed that if the non-symetric loads are even or odd functions of angle ${\theta}$ the stiffness matrix and load vector of the system are composed with only real numbers and relatively small capacity fo computer memory is enough for calculation.

  • PDF

Role of dipeptidyl peptidase-4 as a potentiator of activin/nodal signaling pathway

  • Park, Dong-Seok;Kim, Kyuhee;Jang, Minjoo;Choi, Sun-Cheol
    • BMB Reports
    • /
    • 제51권12호
    • /
    • pp.636-641
    • /
    • 2018
  • DPP4 (dipeptidyl peptidase-4), a highly conserved transmembrane glycoprotein with an exo-peptidase activity, has been shown to contribute to glucose metabolism, immune regulation, signal transduction, and cell differentiation. Here, we show that DPP4 is involved in control of activin/nodal signaling in Xenopus early development. In support of this, gain of function of DPP4 augmented Smad2 phosphorylation as well as expression of target genes induced by activin or nodal signal. In addition, Dpp4 and Xnr1 showed synergistic effect on induction of ectopic dorsal body axis, when co-injected at suboptimal doses in early embryos. Conversely, saxagliptin, a DPP4 inhibitor repressed activin induction of Smad2 phosphorylation. Notably, overexpression of Dpp4 disrupted specification of dorsal body axis of embryo, leading to malformed phenotypes such as spina bifida and a shortened and dorsally bent axis. Together, these results suggest that DPP4 functions as a potentiator of activin/nodal signaling pathway.

Siah Ubiquitin Ligases Modulate Nodal Signaling during Zebrafish Embryonic Development

  • Kang, Nami;Won, Minho;Rhee, Myungchull;Ro, Hyunju
    • Molecules and Cells
    • /
    • 제37권5호
    • /
    • pp.389-398
    • /
    • 2014
  • Siah acts as an E3 ubiquitin ligase that binds proteins destined for degradation. Extensive homology between siah and Drosophila Siah homologue (sina) suggests their important physiological roles during embryonic development. However, detailed functional studies of Siah in vertebrate development have not been carried out. Here we report that Siah2 specifically augments nodal related gene expression in marginal blastomeres at late blastula through early gastrula stages of zebrafish embryos. Siah2 dependent Nodal signaling augmentation is confirmed by cell-based reporter gene assays using 293T cells and 3TP-luciferase reporter plasmid. We also established a molecular hierarchy of Siah as a upstream regulator of FoxH1/Fast1 transcriptional factor in Nodal signaling. Elevated expression of nodal related genes by overexpression of Siah2 was enough to override the inhibitory effects of atv and lft2 on the Nodal signaling. In particular, E3 ubiquitin ligase activity of Siah2 is critical to limit the duration and/or magnitude of Nodal signaling. Additionally, since the embryos injected with Siah morpholinos mimicked the atv overexpression phenotype at least in part, our data support a model in which Siah is involved in mesendoderm patterning via modulating Nodal signaling.

Nonlinear Dynamic Analysis of a Large Deformable Beam Using Absolute Nodal Coordinates

  • Jong-Hwi;Il-Ho;Tae-Won
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제5권4호
    • /
    • pp.50-60
    • /
    • 2004
  • A very flexible beam can be used to model various types of continuous mechanical parts such as cables and wires. In this paper, the dynamic properties of a very flexible beam, included in a multibody system, are analyzed using absolute nodal coordinates formulation, which is based on finite element procedures, and the general continuum mechanics theory to represent the elastic forces. In order to consider the dynamic interaction between a continuous large deformable beam and a rigid multibody system, a combined system equations of motion is derived by adopting absolute nodal coordinates and rigid body coordinates. Using the derived system equation, a computation method for the dynamic stress during flexible multibody simulation is presented based on Euler-Bernoulli beam theory, and its reliability is verified by a commercial program NASTRAN. This method is significant in that the structural and multibody dynamics models can be unified into one numerical system. In addition, to analyze a multibody system including a very flexible beam, formulations for the sliding joint between a very deformable beam and a rigid body are derived using a non-generalized coordinate, which has no inertia or forces associated with it. In particular, a very flexible catenary cable on which a multibody system moves along its length is presented as a numerical example.

전기 업셋팅 가공시의 열탄소성 해석에 관한 연구 (A Study on the Thermo-elasto-plastic Analysis of Upset Forming)

  • 왕지석;박태인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제18권4호
    • /
    • pp.69-76
    • /
    • 1994
  • Thermal elasto-plastic analysis of axi-symmetric body by the finite element method is presented in this paper for analyzing the process of upset forming of circular section extruded bar. The example of calculation for upset forming of Nimonic extruded bar is also presented. It is shown that remeshing of quadrilateral finite element is necessary because the very highly distorted element by plastic deformation disturbs the calculation. Calculated values for nodal points in new mesh are obtained from nodal points of old mesh by linear interpolation method. The experimental results are compared with calculated values. The appearance of upsetupset forming obtained by experimental method is very similar to that obtained by calculations. So, it is proved that the thermal elasto-plastic analysis of axi-symmetric body by the finite element method is very useful for finding the optimum upsetting condition.

  • PDF

Dynamics modeling of a semi-submersible autonomous underwater vehicle with a towfish towed by a cable

  • Park, Jinmo;Kim, Nakwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권2호
    • /
    • pp.409-425
    • /
    • 2015
  • In this paper, we employ a dynamics modeling method for investigating a multi-body dynamics system of semi-submersible autonomous underwater vehicles consisting of a towing vehicle operated near the water surface, a tow cable, and a towfish. The towfish, which is towed by a marine cable for the purposes of exploration or mine hunting, is modeled with a Six-Degree-of-Freedom (6-DOF) equation of motion that reflects its hydrodynamics characteristics. The towing cable, which can experience large displacements and deformations, is modeled using an absolute nodal coordinate formulation. To reflect the hydrodynamic characteristics of the cable during motion, the hydrodynamic force due to added mass and the drag force are imposed. To verify the completeness of the modeling, a few simple numerical simulations were conducted, and the results confirm the physical plausibility of the model.

비소세포폐암 환자의 국소 림프절 전이 발견을 위한 FDG PET의 이용 (The Use of FDG PET for Nodal Staging of Non-Small-Cell Lung Cancer)

  • 백희종;박종호;최창운;임상무;최두환;조경자;원경준;조재일
    • Journal of Chest Surgery
    • /
    • 제32권10호
    • /
    • pp.910-915
    • /
    • 1999
  • Background: Positron emission tomography(PEFT) using fluorine-18 deoxyglucose(FDG), showing increased FDG uptake and retention in malignant cells, has been proven to be useful in differentiating malignant from benign tissues. We indertook the prospective study to compare the accuracy of the whole-body FDG PET with that of the conventional chest computed tomography(CT) for nodal staging of non-small-cell lung cancers(NSCLC). Material and Method: FDG PET and contrast enhanced CT were performed in 36 patients with potentially resectable NSCLC. Each Imaging study was evaluated independently, and nodal stations were localized according to the AJCC regional lymph nodes mapping system. Extensive lymph node dissection(1101 nodes) of ipsi- and contralateral mediastinal nodal stations was performed at thoracotomy and/or mediastinoscopy. Image findings were compared with the histopathologic staging results and were analyzed with the McNema test(p) and Kappa value(k). Result: The sensitivity, specificity, positive predictive value, and negative predictive value of CT for ipsilateral mediastinal nodal staging were 38%, 68%, 25%, 79%, and 61%, and those of PET were 88%, 71%, 47%, 95%, and 75%(p>0.05, K=0.29). When analyzed by individual nodal group(superior, aortopulmonary window, and inferior), the sensitivity, specificity, positive predictive value, and negative predictive value of CT were 27%, 82%, 22%, 85%, and 73%, and those of PET were 60%, 87%, 92%, and 82%(p<0.05, k=0.27). Conclusion: FDG PET in addition to CT appears to be superior to CT alone for mediastinal staging of non-small cell lung cancers.

  • PDF

자동차 와이퍼 시스템의 유연 다물체 동역학 해석 (Flexible Multibody Dynamic Analysis of the Wiper System for Automotives)

  • 정성필;박태원;정원선
    • 대한기계학회논문집A
    • /
    • 제34권2호
    • /
    • pp.175-181
    • /
    • 2010
  • 본 논문에서는 플랫 타입 블레이드를 장착한 와이퍼 시스템의 성능을 예측하기 위한 동역학 해석방법을 제시하였다. 고무 재질로 이루어진 블레이드는 비선형의 특성을 갖기 때문에, 블레이드의 동적특성을 나타내기 위하여 모달 좌표계와 절대 절점 좌표계를 이용하였다. 블레이드 단면의 굽힘 특성을 파악하기 위해 블레이드에 대한 구조 해석을 실시하였다. 해석 결과에 따라 블레이드 단면을 강체, 유연체 및 대변형체의 3 부분으로 구분하였다. 모달 좌표계와 절대 절점 좌표계를 이용하여 블레이드 단면의 유연체 및 대변형체를 표현하였다. 동역학 해석 결과를 검증하기 위해 실험을 실시하였고, 결과 비교를 통해 본 연구에서 생성한 블레이드에 대한 유연 다물체 모델의 신뢰성을 검증하였다.