• Title/Summary/Keyword: Nocturnal Cooling

Search Result 21, Processing Time 0.021 seconds

Relations Between the Nocturnal Inversion Layer and Some Meteorological Elements in the Basin (분지내의 야간 접지역전층 변화와 관련된 기상요소에 대한 연구)

  • 진병화;황수진
    • Journal of Environmental Science International
    • /
    • v.7 no.3
    • /
    • pp.369-374
    • /
    • 1998
  • Meteorological measurements were carried out in the basin of Cheong-Kwan located Yang-San near Pusan city, from Oct. 30 to Nov. 1, 1988. According to the measured data, we vended the close relationship between the variation of nocturnal Inversion layer and the meteorological elements. The nocturnal intrersion layer by radiative cooling in this site extends up to 130 meters or so. And the nocturnal jet ap- pears just above or at the top of the inversion layer, and the stronger of the prevailing wind blows, and the lower of the jet level appears. Some meteorological features such as heating, cooling etc., began to change in or in the slightly higher level of the inversion layer, when they are formed, reinforced and disappeared. And the it In the basin preserves its character because It Is not affected by local scale air flow.

  • PDF

Nocturnal Radiant Cooling by a Plate Viewing the Sky (야간 하늘에 노출된 평판의 복사냉각효과)

  • Byun, Ki-Hong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1300-1305
    • /
    • 2004
  • The purpose of this experiment is to study the radiant cooling effects by a plate directly viewing the nighttime sky. The measurements are performed at a rooftop of the Engineering building at the Dongguk University in Seoul during the month of August in 2004. The radiant cooling effects are compared using three different types of plate surfaces such as galvanized Iron, black painted, and aluminum film coated galvanized iron plate. Among these plates, the black painted surface show the lowest temperature that is lower than its ambient temperature. The maximum radiant cooling temperature difference, that is ambient temperature minus plate temperature, observed is about 5K..

  • PDF

Nocturnal Radiant Cooling Experiment by a Plate Viewing the Sky (야간 하늘에 노출된 평판의 복사냉각 실험)

  • Byun Ki-Hong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.6
    • /
    • pp.605-610
    • /
    • 2005
  • The purpose of this experiment is to study the radiant cooling effects by a plate directly viewing the nighttime sky. The measurements are performed on a rooftop of the Engineering building at the Dongguk University in Seoul during the month of August in 2004. The radiant cooling effects are compared using three different types of plate sufaces, namely, galvanized iron, black painted, and aluminum film coated galvanized iron plate. Among these plates, the black Painted surface showed the lowest temperature that is lower than the ambient temperature. The maximum radiant cooling temperature difference, which is ambient temperature minus plate temperature, observed is about 5 K.

Experimental Study of Cooling Energy Saving Verification Using Blinds and Phase Change Material(PCM) (창호 블라인드와 상변화물질 적용에 의한 냉방 에너지 사용량 절감효과에 대한 검토 연구)

  • Song, Young-Hak;Kim, Ki-Tae;Koo, Bo-Kyung;Lee, Keon-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.1
    • /
    • pp.26-31
    • /
    • 2014
  • This study looks into changing building energy use by application of phase change material (PCM). PCM does not need extra energy for operation and is used for reducing building energy use and, CO2 output by displaying semi-permanent effects after installation. It also is able to avoid the maximum electric power time-zone by inducing a time lag phenomenon of cooling and heating loads with high thermal capacity using latent heat. To verify the efficiency of blinds and PCM, tests about the PCM operation mechanism using air conditioning machinery and nocturnal panel cooling were done. In the test results of the case using PCM installation, a $45^{\circ}$ blind angle with machinery air conditioning and nocturnal panel cooling at the same time shows a 22 percent energy saving effect against general space. The test results of each case were compared and analyzed based on the blind and window opening settings. Finally, the energy reduction of existing buildings using PCM application was reviewed based on the final measurement results.

Characteristics of Nocturnal Boundary Layer Observed in Kyungpook Province (경북지역에서 관측된 야간 대기경계층의 특성)

  • Byung-Hyuk Kwon
    • Journal of Environmental Science International
    • /
    • v.10 no.5
    • /
    • pp.329-336
    • /
    • 2001
  • Characgcteristics of nocturnal boundary layer(NBL) were analyzed by the upper-air observations data using with the airsonde and pilot balloons from 1994 to 1999 in Kyungpook province. The automate weather boundary layer can become stably stratified when the surface is cooler than the air. Stable nocturnal boundary layer height were estimated from the top of surface stable layer where the vertical gradient of temperature and mixing ratio tend to zero or negative. The depth of the stable nocturnal boundary layer depended largely on the thermal effect rather than the wind effect at nighttime. The NBL was more developed on the land than on the coastal region. The stability index (bulk Richardson number) showed that the NBL was stable when the wind was weak and the vertical gradient of the temperature was strong. The heat budget in the NBL was studied by considering the effect of the radiative and the cooled by both the longwave radiative flux and the divergence of the heat flux, while NBL under the cloudy sky the longwave radiative flux played a role of the warming. It was noted that the heat was not conserved in both cases. To complete the heat budget in the NBL the warming/cooling by advection and subsidence must be considered.

  • PDF

Frostfall Forecasting in the Naju Pear Production Area Based on Discriminant Analysis of Climatic Data (기후자료 판별분석에 근거한 나주 배 생산지 서리발생 예측)

  • Han, Jeom-Hwa;Choi, Jang-Jeon;Chung, U-Ran;Cho, Kwang-Sik;Chun, Jong-Pil
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.4
    • /
    • pp.135-142
    • /
    • 2009
  • In order to predict frostfall, nocturnal cooling rate and air temperature changes were analyzed on days with and without frost when the maximum temperature was lower than $20^{\circ}C$. In general, the nocturnal cooling rates on frosty days were higher than those on non-frosty days. The cooling rates averaged from 19:00 to 24:00 on frosty and non-frosty days were $1.7^{\circ}Ch^{-1}$ and $0.7^{\circ}Ch^{-1}$ respectively. As expected, the nocturnal temperature on frosty days was lower than that on non-frosty days. Especially, the midnight air temperature averaged about $3.9{\pm}1.5^{\circ}C$ on frosty days, which was lower than that on non-frosty days (i.e., $10.1{\pm}2.9^{\circ}C$). The discriminant analysis using three independent variables (i.e., total cloud amount, air temperature at 24:00, and 5-day rainfall amount) successfully classified the presence of frost with 87% accuracy.

Characteristics of Nocturnal Atmospheric Cooling on a Mountain Slope (산지 경사면의 야간 대기 냉각 특성)

  • 황규홍;이정택;허승오;심교문
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2001.06a
    • /
    • pp.68-71
    • /
    • 2001
  • 밝고 바람이 없는 저녁, 지표근처의 냉각은 많고 일출 전후에 최저기온이 나타난다(Nishiyama, 1985). 그리고 기온은 지표근처에서 가장 낮고 고도가 높아질수록 높아진다. 이러한 상태를 지표역전(surface inversion) 또는 지면역전(ground inversion)이라 한다. 지표 역전층은 지표근처에 강한 복사냉각(radiative cooling)에 의해 형성되고, 다른 하나는 차가운 공기의 drainage에 의해 이류(advection) 되어 지표근처에 축적된다.(중략)

  • PDF

Nocturnal Radiant Cooling during the Winter by the Plate Viewing the Sky (겨울 야간 하늘에 노출된 평판에 의한 복사냉각 실험)

  • Byun, Ki-Hong
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.5
    • /
    • pp.49-55
    • /
    • 2008
  • The radiant cooling(RC) effects are studied during the winter night. The plate was viewing the nighttime sky. The data were collected at the rooftop of the Engineering building at the Dongguk University in Seoul, Korea. As observed during the summer night, the plate temperature was lower than ambient temperature under the RC favorable conditions. The parameters under study are the wind velocity, cloud index, and visibility for given system size and surface condition. The results follow the same tendency with these parameters as observed from the previous study for the summer night. As long as the wind velocity is less than around 2 m/s, the radiant cooling was observed with the system under study. In some cases, the radiant cooling temperature differences (RCTD) are higher than those for the summer night. The larger the RCTD as the wind velocity decreases and as the sky becomes clear.

Tropical Night (Nocturnal Thermal High) in the Mountainous Coastal City

  • Choi, Hyo
    • Journal of Environmental Science International
    • /
    • v.13 no.11
    • /
    • pp.965-985
    • /
    • 2004
  • The investigation of driving mechanism for the formation of tropical night in the coastal region, defined as persistent high air temperature over than 25$^{\circ}C$ at night was carried out from August 14 through 15, 1995. Convective boundary layer (CBL) of a 1 km depth with big turbulent vertical diffusion coefficients is developed over the ground surface of the inland basin in the west of the mountain and near the top of the mountain, while a depth of thermal internal boundary layer (TIBL) like CBL shrunken by relatively cool sea breeze starting at 100 km off the eastern sea is less than 150 m from the coast along the eastern slope of the mountain. The TIBL extends up to the height of 1500 m parallel to upslope wind combined with valley wind and easterly sea breeze from the sea. As sensible heat flux convergences between the surface and lower atmosphere both at the top of mountain and the inland coast are much greater than on the coastal sea, sensible heat flux should be accumulated inside both the TIBL and the CBL near the mountain top and then, accumulated sensible heat flux under the influence of sea breeze circulation combined with easterly sea breeze from sea to inland and uplifted valley wind from inland to the mountain top returning down toward the eastern coastal sea surface should be transported into the coast, resulting in high air temperatures near the coastal inland. Under nighttime cooling of ground surface after sunset, mountain wind causes the daytime existed westerly wind to be an intensified westerly downslope wind and land breeze further induces it to be strong offshore wind. No sensible heat flux divergence or very small flux divergence occurs in the coast, but the flux divergences are much greater on the top of the mountain and along its eastern slope than on the coastal inland and sea surfaces. Thus, less cooling down of the coastal surface than the mountain surface and sensible heat transfer from warm pool over the coast into the coastal surface produce nocturnal high air temperature on the coastal inland surfaces, which is not much changed from daytime ones, resulting in the persistence of tropical night (nocturnal thermal high) until the early in the morning.

Nocturnal Surface Cooling and Cold Air Transport Analysis Based on High Density Observation - A Case Study of Eunpyeong New Town in Seoul (고밀도 관측자료를 이용한 야간 지면냉각과 찬공기 이동 분석 - 서울 은평구 뉴타운 사례)

  • Yi, Chae-Yeon;Kim, Kyu-Rang;Choi, Young-Jean;Won, Hye-Young;Scherer, Dieter
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.4
    • /
    • pp.124-137
    • /
    • 2012
  • Climate analysis is important in urban planning for human comfort. Synoptic weather conditions can only resolve the 30% of local variance of wind conditions whereas 70% of the variance arise from local terrain, buildings, and other small scale thermal conditions. Climate Analysis Seoul (CAS) was developed to resolve such micro-scale climate. The Local-scale air temperature Deviation (LD) analysis map from CAS showed the co-existence of built-up and suburban areas in the study region (CR, Cold-air analysis Region) despite its small extent. Temperature, humidity, wind speed, and wind direction were monitored in CR. Hourly observed cooling rate agreed well with LD. Cold air production, transportation, and stagnation was visualized by the observed Vertical Temperature Gradient (VTG) along the small stream in CR. VTG observed at the upper-most stream can be divided into two components: radiative cooling and cold air inflow from outside. Radiative cooling exists regardless of the wind speed whereas cold air inflow occurs only with calm wind. From the regression analyses based on the wind speed, the inflow portion was determined as 84% of radiative cooling. Climate analysis in the future will be able to characterize the changes in cold air by urban development plan to support the human comfort.