• Title/Summary/Keyword: No sequence

Search Result 1,817, Processing Time 0.027 seconds

Mn-DPDP enhanced MR imaging in Detection of Focal Hepatic lesion: Evaluation of the Efficacy & Optimization of Pulse Sequence (국소간의 자기공명영상에서 Mn-DPDP의 유용성과 적합한 MR Sequence에 관한 비교, 고찰)

  • Kim Eun Seong;Kim Dae Hyeon;Lee Hyeon Geun;O Geun Taek;Lee Sun No;Lee U Sik
    • Journal of The Korean Radiological Technologist Association
    • /
    • v.27 no.2
    • /
    • pp.104-114
    • /
    • 2001
  • Ⅰ. Purpose : To evaluate the diagnostic value of Mn-DPDP for the detection of focal hepatic lesions on MR images and to determine the optimal pulse sequence to maximize its effect. Ⅱ. Material and Methods : Twenty-eight patients(6 women and 22 men, aged f

  • PDF

Isolation of the Phosphoribosyl Anthranilate Isomerase Gene (TRP1) from Starch-Utilizing Yeast Saccharomycopsis fibuligera

  • Park, Eun-Hee;Kim, Myoung-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1324-1327
    • /
    • 2015
  • The nucleotide sequence of the TRP1 gene encoding phosphoribosyl anthranilate isomerase in yeast Saccharomycopsis fibuligera was determined by degenerate polymerase chain reaction and genome walking. Sequence analysis revealed the presence of an uninterrupted open-reading frame of 759 bp, including the stop codon, encoding a 252 amino acid residue. The deduced amino acid sequence of Trp1 in S. fibuligera was 43.5% homologous to that of Komagataella pastoris. The cloned TRP1 gene (SfTRP1) complemented the trp1 mutation in Saccharomyces cerevisiae, suggesting that it encodes a functional TRP1 in S. fibuligera. A new auxotrophic marker to engineer starch-degrading yeast S. fibuligera is now available. The GenBank Accession No. for SfTRP1 is KR078268.

Development of a Tying-Unit Controller for a Variable Chamber Round Baler (가변 원형 베일러의 결속 기구 제어 장치 개발)

  • 김종언;김경욱
    • Journal of Biosystems Engineering
    • /
    • v.25 no.5
    • /
    • pp.341-350
    • /
    • 2000
  • This study was conducted to develop a control unit for a tying device of a variable chamber round baler. The work process of the tying device was thoroughly analyzed and the control sequence was established according to the work process. Based on this control sequence, a control unit using an 8 bit microprocessor AT 89C52 as a CPU was developed. The driving circuit to control the actuator motion was developed and the PWM method was used to regulate the velocity of the actuator. On the front panel of the control unit, indicators were also installed to show the operations being conducted. A prototype of the developed control unit was manufactured and tested. A total of 50 complete cycles of the control sequence was repeated and no failure was observed. It was evaluated that the developed control unit has an excellent performance and can be used practically for variable chamber round balers.

  • PDF

A Newly Recorded Sea Star of the Genus Luidia (Asteroidea: Paxillosida: Luidiidae) from the Korea Strait, Korea

  • Kim, Donghwan;Kim, Minkyung;Shin, Sook
    • Animal Systematics, Evolution and Diversity
    • /
    • v.33 no.2
    • /
    • pp.131-135
    • /
    • 2017
  • Asteroid specimens of the genus Luidia were collected at a depth of 95-100 m in the Korea Strait by bottom trawling in April 2016. The specimens were identified as Luidia avicularia Fisher, 1913 (Luidiidae: Paxillosida) based on morphological characteristics and molecular phylogenetic analyses, and the species is new to the Korean fauna. A 648-bp partial nucleotide sequence of mitochondrial cytochrome c oxidase I (mt-COI) gene was obtained from Korea, and then was compared to sequences of related species stored in GenBank using molecular phylogenetic analyses. No sequence differences were detected between the L. avicularia mt-COI gene sequences from Korea and China, and the species described in this report was clearly distinct from L. maculata, which was previously reported in Korean fauna. Three Luidia species have been reported in Korea.

Molecular identification and phylogenetic analysis of Neobenedenia spp. isolated from small yellow croaker (Larimichthys polyactis) (참조기(Larimichthys polyactis)에서 분리된 Neobenedenia spp.에 대한 분자 생물 동정 및 계통수 분석)

  • Seo, Han-Gill;Kim, Hyo-Won;Kim, Jung-Hyun
    • Journal of fish pathology
    • /
    • v.35 no.1
    • /
    • pp.135-140
    • /
    • 2022
  • In this study, we determined the cause of a disease outbreak in small yellow croaker(Larimichthys polyactis) in Jeju island. The major external signs in the dead fish were hemorrhage of the skin. Vibrio harveyi were isolated from a few fishes and viruses were not detected from the diseased fish. However, flukes were confirmed on the skin and we conducted molecular identification and phylogenetic analysis of the isolated parasites. The obtained 28S rRNA sequence of our specimen(Accession No. OM333244) showed the highest homology with Neobenedenia girellae, while the COI sequence of our specimen showed the highest homology with N. melleni. Further sequence analysis with other genes and morphological observation are necessary for accurate identification.

First complete mitogenome sequence of Korean Gloydius ussuriensis (Viperidae: Crotalinae)

  • Hye Sook Jeon;Min Seock Do;Jung A Kim;Yoonjee Hong;Chae Eun Lim;Jae-Hwa Suh;Junghwa An
    • Journal of Species Research
    • /
    • v.13 no.2
    • /
    • pp.127-130
    • /
    • 2024
  • The first complete mitogenome sequence of the Red-tongue Pit Viper (Gloydius ussuriensis) from Korea was characterized using next-generation sequencing. The mitogenome is a circular molecule (17,209 bp) with a typical vertebrate mitogenome arrangement, which consists of 2 ribosomal RNA genes (rRNA), 22 transfer RNA genes (tRNA), two non-coding regions (D-loop), and 13 protein-coding genes (PCGs). The base composition of the mitogenome is 32.7% of A, 27.5% of C, 13.9% of G, and 25.9% of T, with a slight AT bias(58.6%). This phylogenetic analysis infers that G. ussuriensis is in the same group as the Chinese G. ussuriensis (Accession No. KP262412) and is closely related to G. blomhoffi and other species of the genus Gloydius. In our study, the complete mitogenome sequence of Korean G. ussuriensis was characterized and we provided basic genetic information on this species.

16S/23S Intergenic Spacer Region as a Genetic Marker for Thiobacillus thiooxidans and T.ferrooxidans

  • Lee, Hye-Won;Choi, Won-Young;Cho, Kyung-Suk;Choi, Won-Ja
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.1046-1054
    • /
    • 2001
  • Bioleaching is the process in which insoluble metal sulfide is oxidized by specialized iron- and/or sulfur-oxidizing lithotrophic bacteria in acidic, metal-rich environments. Most of these processes are carried out by the genus Thiobacillus. Three novel Thiobacillus strains (Thiobacillus thiooxidans AZ11, Thiobacillus thiooxidans MET, and thiobacillus thiooxidans TAS) associated with bioleaching have been isolated from soil and sludge (Korean patent No. 1999-0073060 for T. thiooxidans AZ11, Korean patent No. 1999-0005798 for T. thiooxidans MET, and Korean patent No. 1999-0073059 for T. thiooxidans TAS). A partial sequence of 16S ribosomal RNA gene (16S rDNA) and the entire sequence of 16S/23S intergenic spacer region (ISR) were determined in the three above novel strains and in Thiobacillus ferrooxidans ATCC19859 as a reference strain. When phylogenetic analysis was performed based on G+C contents and sequence alignments, T. ferroxidans ATCC19859 was found to be closely related to previously registered T. ferrooxidans strains in a monophyletic manner, while the three novel T. thiooxidans strains were classified in a paraphyletic manner. Close examination on the base composition of 16S/23S ISR revealed that the 5\` part (nucleotide residues 21-200) was specific for the genus Thiobacillus. On the other end, the 3\` part (nucleotide residues 201-520) showed specificity in T. ferrooxidans strains, but not in T. thiooxidans strains. These results suggest that the proximal and distal halves of 16S/23S could be used as a genetic marker for the identification of the genus Thiobacillus and the species T. ferrooxidans, respectively.

  • PDF

Analysis and Identification of Expressed Sequence Tags in Hairy Root Induced from Korean Ginseng (Panax ginseng C. A. Meyer)

  • Yang, Deok-Chun;In, Jun-Gyo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.12 no.2
    • /
    • pp.154-162
    • /
    • 2004
  • Hairy roots were induced from Korean ginseng (Panax ginseng C. A. Meyer) root explants and studied for their gene expression. A total of 3,000 ESTs (expressed sequence tags) from ginseng hairy root were determined and about 2,700 ESTs have a length of readable sequence, which result in 1,352 unique ESTs sequences. The 879 ESTs showed significant similarities to known nucleotide or amino acid sequences in other plant species, which were divided into eleven categories depending upon gene function. The remaining 473 sequences showed no significant matches, which are likely to be transcripts or to be matched to other organisms. The results indicated that the analysis of the ginseng hairy root ESTs by partial sequencing of random cDNA clones may be an efficient approach to isolate genes that are functional in ginseng root in a large scale. Our extensive EST analysis of genes expressed in ginseng hairy root not only contributes to the understanding of the dynamics of genome expression patterns in root organ but also adds data to the repertoire of all genomic genes.

Cloning and Characterization of Genes Controlling Flower Color in Pharbitis nil Using AFLP (Amplified Fragment Length Polymorphism) and DDRT (Differential Display Reverse Transcription)

  • Kim, Eun-Mi;Jueson Maeng;Lim, Yong-Pyo;Yoonkang Hur
    • Journal of Photoscience
    • /
    • v.7 no.2
    • /
    • pp.73-78
    • /
    • 2000
  • To analyze molecular traits determining pigmentation between Pharbitis nill violet and white, Amplified Fragment Length Polymorphism(AFLP) and Differential Display Reverse Transcription(DDRT) experiments were carried out with either genomic DNAs or total RNAs isolated from both plants. Results of AFLP experiment in combination of 8 EcoRⅠ primers with 6 MseⅠ primers showed 41 violet-and 60 white-specific DNA bands. In the subsequent experiment, 22 violet-and 22 white-specific DNA fragments were amplified by PCR with DNAs eluted. The sizes of the fragments range from 200 to 600bp. DDRT using total RNA produced 19 violet-and 17 white-specific cDNA fragments, ranging from 200 to 600bp. The fragments obtained by both AFLP and DDRT had been cloned into pGEM T-easy vector, amplified and subjected to the nucleotide sequence analyses. As a result of Blast sequence analysis, most of them sequenced up to date showed no similarity to any Known gene, while few has similarity to known animal or plant genes. An AFLP clone V6, for example, has a strong sequence similarity to the human transcription factor LZIP-alpha mRNA and a DDRT clone W19 to Solanum tuberosum 3-hydroxy-3-methylglutaryl coenzyme A reductase mRNA.

  • PDF

Sequence Validation for the Identification of the White-Rot Fungi Bjerkandera in Public Sequence Databases

  • Jung, Paul Eunil;Fong, Jonathan J.;Park, Myung Soo;Oh, Seung-Yoon;Kim, Changmu;Lim, Young Woon
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.10
    • /
    • pp.1301-1307
    • /
    • 2014
  • White-rot fungi of the genus Bjerkandera are cosmopolitan and have shown potential for industrial application and bioremediation. When distinguishing morphological characters are no longer present (e.g., cultures or dried specimen fragments), characterizing true sequences of Bjerkandera is crucial for accurate identification and application of the species. To build a framework for molecular identification of Bjerkandera, we carefully identified specimens of B. adusta and B. fumosa from Korea based on morphological characters, followed by sequencing the internal transcribed spacer region and 28S nuclear ribosomal large subunit. The phylogenetic analysis of Korean Bjerkandera specimens showed clear genetic differentiation between the two species. Using this phylogeny as a framework, we examined the identification accuracy of sequences available in GenBank. Analyses revealed that many Bjerkandera sequences in the database are either misidentified or unidentified. This study provides robust reference sequences for sequence-based identification of Bjerkandera, and further demonstrates the presence and dangers of incorrect sequences in GenBank.