• Title/Summary/Keyword: No sea water discharge

Search Result 31, Processing Time 0.025 seconds

Search of submarine discharge locations with multi-temporal thermal infrared images and ground radar surveys

  • Onishi K.;Sairaiji M.;Rokugawa S.;Tokunaga T.;Sakuno Y.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.685-688
    • /
    • 2004
  • Fresh water discharge from the sea floor strongly affects a coastal ecology and the diffusion of contaminants. Much fresh water discharge has been found in the edge of Kurobe alluvial fan, in which annual rainfall is over 4000mm and there is abundant groundwater. However, it is difficult to find the groundwater discharge, thus the search of possible areas with some remote sensing tools is required. Because the temperature of the discharge point is relatively low compared with the surrounding sea water surfaces, there is a possibility to detect the area as an irregular zone of thermal infrared images. Two anomalous temperature zones, which have no surface streams from rivers, are detected by ASTER thermal-infrared images. One of them was verified as the groundwater discharge point by dives. In addition, the distribution of water table under the land side of the two areas is also detected as irregular zones by a ground-penetrating radar

  • PDF

The Evaluation of Water Quality in Coastal Sea of Saemangeum by Chemical Environmental factors (새만금 하구역의 이화학적 환경요인에 따른 수질 평가)

  • Kim, Jae-Ok;Kim, Won-Jang;Jo, Kuk-Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.5
    • /
    • pp.57-65
    • /
    • 2007
  • The objective of this study was to evaluate chemical water quality by hourly monitoring(25hr) of Saemangeum esturary. For this study, we selected 2 sites like a Mangyong Bridge(St. 6) and Dongjin Bridge(St. 7). Inflow of salt water was not detected during low tide(maximum 553, 508cm) of all stations, while the salinity rises were detected in spring tide(750cm). When 602m of maximum tide was reached, salinity concentration was increased at St. 7, while there was no change in St. 6. Therefore, We know that salinity variation is greatly influenced by tide height at survey site. Also, significant variance of salinity(p<0.05) was found between St. 6 and St. 7 because dike construction made the flood tide move into the Dongjin river. Total suspened solids(TSS) concentration was increased because of the river runoff at St. 6, and also the turbulance and resuspension according to salt intrusion at St. 7. During the high tide, the water discharge from the sea seemed to dilute the nutrient but to elevate TSS concentration in St. 7. Silicate and nitrate concentrations in the studied site were decreased by the mixing of sea water, whereas the evident trend of phosphate concentration was not found. This result can be explained by the phosphorus condition. Phosphorus exists inactive when it is affected by hydrated iron and adsorbed onto suspended matters. Compared to the environmental conditions of the St. 6 and St. 7, physical factors such as temperature, dissolved oxygen and TSS have statistically no significant difference(p<0.001), but nutrient concentrations were higher at St. 6 than St. 7. It could be suggested from these results that it is important to control the discharge of fresh water by sewage treatment plants located in St. 6 for water quality management.

Characteristics of Water Quality and factor Analysis on the Variations of Water Quality in Coastal Sea around the Keum River Estuary in Summer (하계 금강하구 주변해역의 수질특성과 수질변동 요인분석)

  • Kwon Jung-No;Kim Jong-Gu;You Sun-Jae
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.4
    • /
    • pp.3-22
    • /
    • 2000
  • To know characteristics of water quality in coastal sea around the Keum river estuary in summer, we studied the water quality of surface, middle and bottom level during Jun e~september, 1998. The mean concentrations of COD, DIN, DIP & chlorophyll-a were 1.36mg/L, 28.60㎍-at/L, 0.48㎍-at/L and 4.14㎍/L, respectively, which were over eutrophication criteria in sea water. After the Keum river dyke was constructed, seasonal freshwater discharge was largely changed. About 80% of total annual freshwater discharge was concentrated in summer as rainy season from July to September. The correlation coefficient of DIN versus salinity was shown to be high, and thus the concentration of DIN was closely related to freshwater discharge. Maximum Chlorophyll-a concentration was occurred in September, due to increased DIP concentration, high water temperature and low salinity after heavy rainfall in August. The results of Principal Component Analysis showed that the first factor represented a series of eutrophication factors, the second factor w3s a valiance of seasonal fluctuation, and the third was a variance of progress of mass change.

  • PDF

Improvement of Low Water Level Rating Curve in Tidal River Taehwa (태화강 갑조부의 저수위 수위-유량곡선 개선)

  • Jo, Hong-Je;Hwang, Jae-Ho;Mun, Seong-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.5
    • /
    • pp.635-645
    • /
    • 2000
  • In tidal rivers, the river level, discharge and tide are interrelated. Therefore, the stage-discharge relation that takes no account of tidal effects is inaccurate. For the calculation of river discharge in low water level, this paper attempts to formulate a multiple regression equation of stage-discharge curve to calculate the river discharge in low water level with variables as river level and differences between sea level and river level. Numerical application were perfonned on Ulsan gaging station in Taehwa river, and the comparison with existing rating curve equation showed good applicability of this multiple regression equation.uation.

  • PDF

Super-intensive Culture of Whiteleg Shrimp, Litopenaeus vannamei (Boone, 1931), in HDPE-lined Ponds with no Water Exchange (사육수 비교환방식을 이용한 포장 사육지에서의 흰다리새우, Litopenaeus vannamei (Boone, 1931)의 초고밀도양식)

  • Cho, Yeong-Rok;Kim, Bong-Rae;Jang, In-Kwon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.4
    • /
    • pp.331-339
    • /
    • 2010
  • Shrimp farming is the most important mariculture industry on the west coast of South Korea. However, it has suffered from mass mortality due to viral disease outbreaks and coastal pollution due to water discharge. This study developed an intensive shrimp culture method for outdoor ponds, without water exchange, which minimizes the chance of viral transmission from the environment, reduces coastal pollution by water discharge and enhances shrimp production. A culture trial was conducted in two high-density polyethylene (HDPE)-lined ponds with a $550\;m^2$ surface area. The ponds were stocked with postlarvae of Litopenaeus vannamei, the major farmed shrimp species in Korea, on July 10, 2007, and cultured for 90 days with no water exchange. The stocking density of the postlarvae (B.W. 0.0015 g) was $272\;ind./m^2$, which is eight times higher than in traditional pond culture in Korea. At harvest, the total production of ponds 1 and 2 was 1,362kg ($2.48\;kg/m^2$) and 1,282 kg ($2.33\;kg/m^2$), respectively. This is 20~22 times higher than the mean farmed shrimp production ($0.112\;kg/m^2$) in Korea and about eight times higher than in traditional ponds with a good harvest. Although there was no water exchange throughout the culture period, the mean concentrations of unionized ammonia and nitrite-nitrogen were as low as 0.038 and 6.0 mg/L, respectively. The feed conversion rate (FCR) was 1.38, which is 20~45% lower than that of traditional pond cultures. The high efficiency of the diet in this study is thought to be due to a well-managed feeding strategy and well-developed bioflocs used as diet additions for the shrimp. The final body weight of the shrimp at harvest was low (12.2~12.5 g), compared with that of traditional pond culture. This may have resulted from the combination of a short culture period, high density of shrimp, and low temperature. This study suggests that a super-intensive shrimp pond culture method using biofloc technology with no water exchange can minimize viral transmission via water exchange, reduce coastal pollution, and enhance shrimp production.

Hydrological Characteristics of the Underground Discharge at Moolgol in Dokdo, Korea (독도 물골 지하유출수의 수문학적 특성)

  • Woo, Nam C.;Lee, Dong Y.;Park, Jong H.;Kim, Yoon B.;Woo, Min S.;Park, Chan H.
    • Economic and Environmental Geology
    • /
    • v.55 no.1
    • /
    • pp.45-51
    • /
    • 2022
  • Whether Dokdo can sustain human habitation or economic life of their own plays an important role to the legal status of the island in the international maritime law. This study reports the hydrological survey results regarding the water resource of the island occurred at Moolgol in Seodo. The amount of underground discharge at Moolgol was estimated at least 1.1 m3/d, conforming the results of previous studies. Based on the oxygen and hydrogen isotope ratios of water, the discharge appeared to originate from precipitation, and about 36% of the daily precipitation moves fast to the Moolgol through the joints developed in the volcanic bedrocks. Quality of the discharged water shows relatively higher concentrations in Cl and NO3 to be used for drinking and domestic purposes, probably affected by the sea spray and waves from surrounding sea and the birds' excretion such as black-tailed gulls.

Introduction For Market & Technical Trend of Regasification Vessel (Regasification vessel의 시장 전망과 기술 동향)

  • Lee, Dong-Hyun
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.181-182
    • /
    • 2006
  • 최근 미주의 급격한 LNG 수요와 더불어 Safety, 환경 및 테러의 문제를 안고 있는 육상 LNG terminal의 대안으로 등장한 LNG Regasification Vessel의 시장 전망과 미주 지역의 엄격한 환경 규제를 만족시키기 위한 Regasification Vessel의 기술 동향에 대해 고찰하였다.

  • PDF

A numerical study on the dispersion of the Yangtze River water in the Yellow and East China Seas

  • Park, Tea-Wook;Oh, Im-Sang
    • Journal of the korean society of oceanography
    • /
    • v.39 no.2
    • /
    • pp.119-135
    • /
    • 2004
  • A three-dimensional numerical model using POM (the Princeton Ocean Model) is established in order to understand the dispersion processes of the Yangtze River water in the Yellow and East China Seas. The circulation experiments for the seas are conducted first, and then on the bases of the results the dispersion experiments for the river water are executed. For the experiments, we focus on the tide effects and wind effects on the processes. Four cases of systematic experiments are conducted. They comprise the followings: a reference case with no tide and no wind, of tide only, of wind only, and of both tide and wind. Throughout this study, monthly mean values are used for the Kuroshio Current input in the southern boundary of the model domain, for the transport through the Korea Strait, for the river discharge, for the sea surface wind, and for the heat exchange rate across the air-sea interface. From the experiments, we obtained the following results. The circulation of the seas in winter is dependent on the very strong monsoon wind as several previous studies reported. The wintertime dispersion of the Yangtze River water follows the circulation pattern flowing southward along the east coast of China due to the strong monsoon wind. Some observed salinity distributions support these calculation results. In summertime, generally, low-salinity water from the river tends to spread southward and eastward as a result of energetic vertical mixing processes due to the strong tidal current, and to spread more eastward due to the southerly wind. The tide effect for the circulation and dispersion of the river water near the river mouth is a dominant factor, but the southerly wind is still also a considerable factor. Due to both effects, two major flow directions appear near the river mouth. One of them is a northern branch flow in the northeast area of the river mouth moving eastward mainly due to the weakened southerly wind. The other is a southern branch flow directed toward the southeastern area off the river mouth mostly caused by tide and wind effects. In this case, however, the tide effect is more dominant than the wind effect. The distribution of the low salinity water follows the circulation pattern fairly well.

Environmental and Ecological Consequences of Submarine Groundwater Discharge in the Coastal Areas of the Korea Peninsula (한반도 연안 해역에서 해저 지하수 유출의 환경 생태학적 중요성)

  • KIM GUEBUEM;HWANG DONG-WOON;RYU JAE-WOONG;LEE YONG-WOO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.4
    • /
    • pp.204-212
    • /
    • 2005
  • Recognition has emerged that nutrient inputs from the submarine discharge of fresh, brackish, and marine groundwaters into the coastal ocean are comparable to the inputs via river discharge. The coastal areas of the Korea peninsula and adjacent seas exhibit particular importance in the role of submarine groundwater discharge (SGD), in terms of the magnitude of SGD and associated continental material fluxes. For example, in the southern sea of Korea, SGD transports excess nutrients into the coastal regions and thus appears to influence ecosystem changes such as the outbreak of red tides. Around volcanic island, Jeju, which is composed of high permeability rocks, the amount of SGD is higher by orders of magnitude relative to the eastern coast of North America where extensive SGD studies have been conducted. In particular, nutrient discharge through SGD exerts a significant control on coastal ecosystem changes and results in benthic eutrophication in semi-enclosed Bang-du bay, Jeju. In the entire area of the Yellow Sea, tile submarine discharge of brackish groundwater and associated nutrients are found to rival the river discharges into the Yellow Sea, including those through Yangtze River, Han River, etc. In the eastern coast of the Korea peninsula, SGD is significantly higher during summer than winter due to high hydraulic gradients and due to wide distribution of high permeability sandy zones, faults, and fractures. On the other hand, in the estuarine water, downstream construction of the dam in the Nakdong River, SGD was highest when the river discharge was lowest (but water level of the dam was highest). This suggests that even though there is no visible freshwater discharge into this estuary, the discharge of chemical species is significant through SGD. On the basis of the results obtained from the coastal areas of the Korea peninsula, SGD is considered to be an important pathway of continental contaminants influencing tidal-flat ecosystems, red tides, and coral ecology. Thus, future costal management should pay great attention to the impact of SGD on coastal pollution and eutrophication.

A study of seasonal variation of the residual flow before and after Saemangeum reclamation (새만금간척전후의 잔차류의 계절변화에 관한연구(농지조성 및 농어촌정비))

  • 신문섭
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.47-53
    • /
    • 2000
  • Saemangeum coastal area is being constructed the 33km sea dike and 40,000ha reclamation area. The purpose of this study is to find the residual circulations in spring before and after the dike construction by a robust diagnostic and prognostic numerical model. Heat flux at the sea surface in May was adopted on the basis of the daily inflow of solar radiation at the earth surface, assuming an average atmospheric transmission and no clouds, as a function of latitude and time of year(George L.P.,J. E. William,1990). The discharge from the Geum, the Mankyung and the Dongjin rivers was adopted on the basis of experience formula of river flow in May(The M. of C.,Korea, 1993). Water temperature and salinity along the open boundaries are obtained from the results of field observations. The results of spring of the residual flow in the Saemangeum coastal area by a prognostic numerical model lead to the following conclusions: Water temperature in spring is the highest, salinity is the lowest and density is the lowest at the upper layer near the coast after the dike construction. The flow pattern at the upper layer during spring is anti-clockwise circulation between Wi and Shinsi islands. The flow pattern at the lower layer is clockwise circulation between Wi and Shinsi islands.

  • PDF