• 제목/요약/키워드: Nitrone

검색결과 19건 처리시간 0.028초

Synthesis of Perfluorinated Heterocyclic Compounds Having a Long Alkyl Chain Functionality by 1,3-Dipolar Cycloaddition

  • Lee, Chan-Woo;Hwang, Ho-Yun;Park, Joo-Yuen;Chi, Ki-Whan
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권5호
    • /
    • pp.1305-1308
    • /
    • 2010
  • Regioselective perfluorinated isoxazolidine (5 and 7), isoxazoline (9) and 1,2-addition products (6 and 8) having a long alkyl chain functionality have been prepared by 1,3-dipolar cycloaddition between a 1,3-dipole (NH-nitrone or nitrile oxide) and dipolarophile (perfluoro-2-methyl-2-pentene or styrene), respectively. Interestingly, unusual extended conjugated form of isoxazoline adduct (10) was obtained by dehydrofluorinated reaction from the corresponding perfluorinated isoxazoline adduct (9) which was derived from cycloadition between the perfluorinated long alkyl nitrile oxide 1,3-diplole and styrene olefin. This synthetic methodology of heterocyclic compound having a long alkyl chain functionality is useful for the designing of synthetic strategy and potential self-assembled monolayers (SAM) application. These derivatives were characterized by IR, $^1H$ and $^{19}F$ NMR, and MASS analysis.

The Efflux Transport of Choline through Blood-Brain Barrier is Inhibited by Alzheimer's Disease Therapeutics

  • Lee, Na-Young;Kang, Young-Sook
    • Biomolecules & Therapeutics
    • /
    • 제16권3호
    • /
    • pp.179-183
    • /
    • 2008
  • In the present study, we examined the effects of several therapeutics of Alzheimer's disease, such as donepezil hydrochloride, tacrine and $\alpha$-phenyl-n-tert-butyl nitrone (PBN) on choline efflux from brain to circulating blood. The brain-to-blood efflux of [$^3H$]choline in rats was significantly inhibited by tacrine and PBN. Also the [$^3H$]choline efflux was reduced by tacrine and donepezil hydrochloride in the TR-BBB cells, in vitro the blood-brain barrier (BBB) model. These results suggest that these drugs may influence choline efflux transport from brain to blood and regulate the choline level in brain resulting in the increase of acetylcholine synthesis.

N-tert-Butyl-${\alpha}$-Phenylnitrone 유도체의 가수분해 반응메카니즘과 반응속도론적 연구 (A Study on the Kinetics and Mechanism of Hydrolysis of N-tert-Butyl-${\alpha}$-Phenylnitrone Derivatives)

  • 곽천근;이광일
    • 한국응용과학기술학회지
    • /
    • 제15권2호
    • /
    • pp.1-9
    • /
    • 1998
  • The rate constants of hydrolysis of N-tert-butyl-${\alpha}$-phenylnitrone and its derivatives have been determined by UV spectrophotometry at $25^{\circ}C$ and a rate equation which can be applied over a wide pH range was obtained. On the basis of rate equations derived and judging from the hydrolysis products obtained and general base and substituent effects, plausible mechanism of hydrolysis in various pH range have been proposed. Below pH 4.5, the hydrolysis was initiated by the protonation and followed by the addition of water to ${\alpha}-carbon$. Above pH 10.0, the hydrolysis was proceeded by the addition of hydroxides ion to ${\alpha}-carbon$. In the range of 4.5${\sim}$10.0 the addition of water to nitrone was rate controlling step.

Kinetics and Mechanism of the Hydrolysis of ${\alpha}$, N-Diphenylnitrone

  • Tae-Rin Kim;Kwang-Il Lee
    • Bulletin of the Korean Chemical Society
    • /
    • 제12권3호
    • /
    • pp.273-276
    • /
    • 1991
  • The rate constants of hydrolysis of ${\alpha}$, N-diphenylnitrone and its derivatives have been determined by UV spectrophotometry from pH 2.0 to 13.5, and a rate equation which can be applied over a wide pH range was obtained. On the basis of rate equation, hydrolysis product, and general base and substituent effects, a plausible mechanism of hydrolysis has been proposed: Below pH 5, the hydrolysis was initiated by the protonation and followed by the addition of water to ${\alpha}$-carbon. However, above pH 11, the hydrolysis was proceeded by the addition of hydroxide ion to ${\alpha}$-carbon. In the range of pH 5-11, the addition of water to nitrone is rate controlling step.

(${\alpha}$-Phenyl-N-iso-Propylnitrone 유도체의 가수분해 반응 메카니즘과 반응 속도론적 연구 (A Study on the Kinetics and Mechanism of the Hydrolysis of ${\alpha}$-Phenyl-N-iso-propylnitrone)

  • 곽천근;장병만;이석우;이기창
    • 한국응용과학기술학회지
    • /
    • 제11권1호
    • /
    • pp.27-31
    • /
    • 1994
  • The rate constants of hydrolysis of ${\alpha}$-phenly-N-iso-propylnitrone and its derivatives have been determined by UV spectrophotometry at $25^{\circ}C$ and a rate equation which can be applied over a wide pH range was obtained. On the basis of rate equations derived and judging from the hydrolysis products obtained and general base and substituent effects, plausible mechanism of hydrolysis in various pH range have been proposed. Below pH 4.5, the hydrolysis was initiated by the protonation and followed by the addition of water to ${\alpha}$-carbon. Above pH 10.0, the hydrolysis was proceeded by the addition of hydroxide ion to ${\alpha}$-carbon. In the range of $4.5{\sim}10.0$, the addition of water to nitrone was rate controlling step.

Choline and basic amine drugs efflux from brain to blood across the blood-brain barrier

  • Lee, Na-Young;Kang, Young-Sook
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2003년도 Annual Meeting of KSAP : International Symposium on Pharmaceutical and Biomedical Sciences on Obesity
    • /
    • pp.107-107
    • /
    • 2003
  • The purpose of this study is to examine that the efflux transport system for choline from brain to blood is present at the blood-brain barrier (BBB) using brain efflux index (BEI) method. [$^3$H]Choline was microinjected into parietal cortex area 2 (Par2) region of rat brain, and was eliminated from the brain with an apparent elimination half life of 45 min. The BBB efflux clearance of [$^3$H]choline was 0.12 $m\ell$/min/g brain, which was calculated from the efflux rate constant (1.5${\times}$10$\^$-2/ min$\^$-1/) and the distribution volume in the brain slice (8.1 $m\ell$/g brain). This process was saturable and significantly inhibited by various organic cationic compounds including hemicholinium-3, tetraethylammonium chloride (TEA) and verapamil, by antioxidant, ${\alpha}$-phenyl-n-tert-butyl nitrone (PBN), and by Alzheimer's disease therapeutics, such as acetyl $\ell$-carnitine and tacrine. In conclusion, this finding is the first direct in vivo evidence that choline is transported from brain to the blood across the BBB via a carrier-mediated efflux transport process.

  • PDF

Inhibition of Prolyl 4-Hydroxylase by Oxaproline Tetrapeptides In Vitro and Mass Analysis for the Enzymatic Reaction Products

  • Moon Hong-sik;Begley Tedhg P.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제5권1호
    • /
    • pp.61-64
    • /
    • 2000
  • A series of 5-oxaproline peptide derivatives was synthesized and evaluated for its ability to inhibit the prolyl 4-hydroxylase in vitro. Structure-activity studies show that the 5-oxaproline sequences, prepared by the 1,3-dipolar cycloaddition of the C-methoxycarbonyl-N-mannosyl nitrone in the presence of the ethylene, are more active than the corresponding proline derivatives. Prolyl 4-hydroxylase belongs to a family of $Fe^{2+}-dependent$ dioxygenase, which catalyzes the formation of 4-hydroxyproline in collagens by the hydroxylation of proline residues in -Gly-Xaa-Pro-Gly- of procollagen chains. In this paper we discover the more selective N-Cbz-Gly-Phe-Pro-Gly-OEt $(K_m\;=\;520\;{\mu}M)$ sequences which are showed stronger binding than others in vitro. Therefore, we set out to investigate constrained tetrapeptide that was designed to mimic the proline structure of pep tides for the development of prolyl 4-hydroxylase inhibitor. From this result, we found that the most potent inhibitor is N-Dansyl-Gly-Phe-5-oxaPro-Gly-OEt $(K_i\;=\;1.6\;{\mu}M)$. This has prompted attempts to develop drugs which inhibit collagen synthesis. Prolyl 4-hydroxylase would seem a particularly suitable target for antifibrotic therapy.

  • PDF

(${\alpha}-Phenyl-N-iso-propylnitrone$유도체에 대한 Sodium Thiophenoxide의 친핵성 첨가반응 메카니즘과 그의 반응 속도론적 연구 (Kinetics and Mechanism of Nucleophilic Addition of Sodium Thiophenoxide to ${\alpha}-Phenyl-N-iso-Propylnitrone$ derivatives)

  • 이광일;김영주;곽천근;장병만;이기창
    • 한국응용과학기술학회지
    • /
    • 제12권2호
    • /
    • pp.93-98
    • /
    • 1995
  • The rate constant of Nucleophilic addition of sodium thiophenoxide to nitrone were determined by UV Spectrophotometry and a rate equation which can be applied over wide pH range was obtained. Base on the rate equation, general base effect, substituent effect and final product, plausible mechanism of addition reaction have been proposed. Blow pH 3.0, the reaction was initiated of thiophenol, and in the range of pH $3.0{\sim}10.0$, proceeded by the competitive addition of thiophenol and thiophenoxide anion. Above the pH 10.0, the reaction proceeded through the addition of a thiophenoxide anion.

Transport of choline and its relationship to transport of cationic drugs in immortalized rat brain capillary endothelial cell line

  • Park, Hong-Mi;Lee, Kyeong-Eun;Lee, Na-Young;Kang, Young-Sook
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2003년도 Annual Meeting of KSAP : International Symposium on Pharmaceutical and Biomedical Sciences on Obesity
    • /
    • pp.106-106
    • /
    • 2003
  • Choline serves critical roles in the CNS both as a precursor of neurotransmitter and as an essential component of membrane phospholipids. The long-term maintenance of brain choline concentration is dependent on choline transport across the blood-brain barrier (BBB), And, we examined to elucidate the characteristics of transport of choline across the BBB using conditionally immortalized rat brain capillary endothelial cell line (TR-BBB) in vitro. The [$^3$H]choline in TR - BBB was increased by time dependently, but independent on Na$\^$+/, and the transport process is saturable with Michaelis-Menten constrant, Km of about 26 ${\mu}$M. The uptake of [$^3$H]choline is susceptible for inhibition by various organic cationic compounds including hemicholinium-3, tetraethylammonium chloride (TEA) and $\ell$-carnitine. Also, we investigated the relationship of transport of choline and cationic drugs. The uptake of [$^3$H]choline is inhibited by antioxidant, a-phenyl-n-tert-butyl nitrone (PBN) with IC$\sub$50/ of 1.2 mM. and by Alzheimer's disease therapeutics, such as acetyl $\ell$-carnitine, tacrine and donepezil. Also, choline uptake presented competitive inhibition with PBN, donepezil and acetyl $\ell$-carnitine in Lineweaver-Burk plot. In conclusion, TR-BBB cells express a saturable transport system for uptake of choline, and several cationic drugs may be transported into the brain by BBB choline transporter.

  • PDF