• Title/Summary/Keyword: Nitrogen-corrected True Metabolizable Energy

Search Result 14, Processing Time 0.02 seconds

Nitrogen-corrected True Metabolizable Energy and Amino Acid Digestibility of Chinese Corn Distillers Dried Grains with Solubles in Adult Cecectomized Roosters

  • Li, F.;Liu, Y.;Yin, R.Q.;Yang, X.J.;Yao, J.H.;Sun, F.F.;Li, G.J.;Liu, Y.R.;Sun, Y.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.6
    • /
    • pp.838-844
    • /
    • 2013
  • This study was conducted to evaluate chemical composition, nitrogen-corrected true metabolizable energy (TMEn) and true amino acids digestibility of corn distillers dried grains with solubles (DDGS) produced in China. Twenty five sources of corn DDGS was collected from 8 provinces of China. A precision-fed rooster assay was used to determine TMEn and amino acids digestibility with 35 adult cecectomized roosters, in which each DDGS sample was tube fed (30 g). The average content of ash, crude protein, total amino acid, ether extract, crude fiber and neutral detergent fiber were 4.81, 27.91, 22.51, 15.22, 6.35 and 37.58%, respectively. TMEn of DDGS ranged from 1,779 to 3,071 kcal/kg and averaged 2,517 kcal/kg. Coefficient of variation for non-amino acid crude protein, ether extract, crude fiber and TMEn were 55.0, 15.7, 15.9 and 17.1%, respectively. The average true amino acid digestibility was 77.32%. Stepwise regression analysis obtained the following equation: TMEn, kcal/kg = -2,995.6+0.88${\times}$gross energy+$49.63{\times}a^*$ (BIC = 248.8; RMSE = 190.8; p<0.01). Removing gross energy from the model obtained the following equation: TMEn, kcal/kg = 57.88${\times}$ether extracts+$87.62{\times}a^*$ (BIC = 254.3, RMSE = 223.5; p<0.01). No correlation was found between color scores and lysine true digestibility (p>0.05). These results suggest that corn DDGS produced in China has a large variation in chemical composition, and gross energy and $a^*$ value can be used to generate TMEn predict equation.

Effects of dietary β-mannanase supplementation on the additivity of true metabolizable energy values for broiler diets

  • Lee, Byung Bo;Yang, Tae Sung;Goo, Doyun;Choi, Hyeon Seok;Pitargue, Franco Martinez;Jung, Hyunjung;Kil, Dong Yong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.4
    • /
    • pp.564-568
    • /
    • 2018
  • Objective: This experiment was conducted to determine the effects of dietary ${\beta}$-mannanase on the additivity of true metabolizable energy (TME) and nitrogen-corrected true metabolizable energy ($TME_n$) for broiler diets. Methods: A total of 144 21-day-old broilers were randomly allotted to 12 dietary treatments with 6 replicates. Five treatments consisted of 5 ingredients of corn, wheat, soybean meal, corn distillers dried grains with solubles, or corn gluten meal. One mixed diet containing 200 g/kg of those 5 ingredients also was prepared. Additional 6 treatments were prepared by mixing 0.5 g/kg dietary ${\beta}$-mannanase with those 5 ingredients and the mixed diet. Based on a precision-fed chicken assay, TME and $TME_n$ values for 5 ingredients and the mixed diet as affected by dietary ${\beta}$-mannanase were determined. Results: Results indicated that when ${\beta}$-mannanase was not added to the diet, measured TME and $TME_n$ values for the diet did not differ from the predicted values for the diet, which validated the additivity. However, for the diet containing ${\beta}$-mannanase, measured $TME_n$ value was greater (p<0.05) than predicted $TME_n$ value, indicating that the additivity was not validated. Conclusion: In conclusion, the additivity of energy values for the mixed diet may not be guaranteed if the diet contains ${\beta}$-mannanase.

Feeding Trials to Compare Theoretical Accuracy between Apparent and True Metabolizable Energy Systems in Chick Diets (병아리 사료에서 일반대사에너지와 순대사에너지의 이론적 정확성 비교를 위한 실험)

  • 지규만
    • Journal of Nutrition and Health
    • /
    • v.25 no.7
    • /
    • pp.543-554
    • /
    • 1992
  • True metabolizable energy(TME) is believed a better indicator for animal performance than apparent metabolizable energy (AME) for excluding the endogenous energy losses from excreta, However few researches have been conducted to compare superiority of any energy systems through practical animal feeding tests. Present study was to compare the energy systems in young chicks in terms of predictability of energy intake for the birds performances including body energy retention and of methodological accuracy by evaluating reproducibility and additi-vity of energy values of feed ingredients and compound diets. Five ingredients such as yellow corn wheat soybean meal fish meal and wheat bran were measured for their various biological energy values. in the first feeding trial chicks were restric-ted-fed the basal diet at 80, 60 and 40% on weight basis of the amount of feed ingested by chicks fed ad libitum the same diet. chicks in the second trial were also restricted-fed diets at levels of 80, 70, 60 and 50% on energy basis of the amount consumed by the basak duet group fed ad libitum The diets in the latter trial were however composed of differeent formulations from the basal diet. One-week-old Single Comb White Leghorn male chicks were individually alloted in a cage on 10 cages/treatment basis and fed the diets for 14 days. Individual carcass energy was measured after the feeding trials. Coefficients of variation of energy measurements were lesser for nitrogen-corrected AME and TME(AMEn & TMEn respectively) than AME and TME values suggesting taht reprodu-cibility of energy determinations by former systems could be better than the latters. The coeffi-cients for AME and TME were almkost of the same values. Additivity obtained by the rations between the calculated values and catual measurements appeared quite satisfactory for all the energy systems. Those of AME and TME however were relatively better than the other systems. Regression coefficient ${r}^2$ between energy intake by various systems and chick performances appeared higher for TME, AMEn and TMEn than AME implying that the former systems could provide better predictability for body weight gain and energy retention than the AME. The ${r}^2$ values for TME and AMEn particularly for body weight gain were on the average 0.967 and 0.960 respectively. In conclusion TME or AMEn can be recommended as choice for dietary energy system in terms of performance predictability of the birds and of procedural convenience for the measurements.

  • PDF

Evaluation of the Feeding Value of Sesame Oil Meal and Effects of Its Dietary Supplementation on the Performances of Laying Hens (호마박의 영양적 가치 평가 및 산란계 사료 내 첨가각 사양 성적에 미치는 영향)

  • Im H. J.;Ahn S. M.;You S. J.;Kim Y. R.;Ahn B. K.;Kang C. W.
    • Korean Journal of Poultry Science
    • /
    • v.31 no.4
    • /
    • pp.255-263
    • /
    • 2004
  • Two experiments were conducted to evaluate the feeding values of sesame oil meal (SOM) and to investigate the effects of its dietary supplementation on egg production in laying hens. In experiment I, the values of true metabolizable energy (TME), nitrogen corrected true metabolizable energy (TMEn) and true amino acid availability (TAAA) were determined by force-feeding 16 ISA-Brown roosters and collecting the total excreta from the birds, The TME and TMEn of SOM were 2.30 and 1.99 kcal/g, respectively, and the average TAAA of 15 amino acids was $76.93\%$. In experiment 2, a total of ninety, 48 weeks old ISA-Brown layer were randomly divided into 9 groups of 10 birds each and assigned to three experimental diets containing 0, 5 and $10\%$ SOM for 4 weeks (30 birds per treatment). The inclusion of SOM into laying hen diets at the 5 and $10\%$ level did not affect production and quality of egg. The C18:3 $\omega$3 content of egg yolks in the $10\%$ SOM group was higher than the other groups, but not significantly. There were no adverse effects on blood parameters in layers fed treated diets containing $5\%$ or $10\%$ SOM, The results indicate that SOM can be used for layers diet up to $10\%$ without any significant negative effects on egg production and quality.

Effects of Alpha-galactosidase Supplementation to Corn-soybean Meal Diets on Nutrient Utilization, Performance, Serum Indices and Organ Weight in Broilers

  • Wang, C.L.;Lu, W.Q.;Li, Defa;Xing, J.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.12
    • /
    • pp.1761-1768
    • /
    • 2005
  • Effects of alpha-galactosidase (GAL) on broiler corn-soybean meal diet was investigated. In experiment 1, sixty cockerels were allocated to five groups, including three enzyme treatments (GAL added at 0, 500, and 1,000 mg/kg diet), a nitrogen-free diet group and a fast group. The true nitrogen-corrected ME (TME$_n$) and true amino acid availability were determined. In experiment 2, 324 day-old chicks were used in a 2${\times}$3 factorial design consisting of two energy contents (high and low) and three GAL levels (0, 250, and 500 mg/kg). Three feeding phases, comprising 0-21 d, 22-35 d and 36-48 d, were involved. GAL addition improved TME$_n$ and the availability of methionine and cystine (p<0.05). The apparent ME (AME) or nitrogen-corrected AME (AME$_n$) and digestibility of dry matter, organic matter, calcium, and phosphorus were improved significantly on d 21, so was crude protein and an interaction of energy and GAL on AME$_n$ (p<0.05) was found on d 35. However, daily intake and daily gain were significantly improved with GAL addition (p<0.05) during 21 d. The small intestine relative weight decreased at 250 mg/kg GAL (p<0.05) on d 35, whereas presented an interaction between GAL and energy on d 21 (p<0.05). Likewise, this treatment increased breast muscle ratio (p<0.05). On d 21, triglycerides level of broilers showed interaction between energy and enzyme levels (p<0.05). Uric acid level in 500 mg/kg GAL declined linearly (p<0.05). On d 35, quadratic effects (p<0.05) were observed in total protein, albumin, globulin and cholesterol content for enzyme supplementation. And the interactive effects of energy and GAL on serum values showed more obviously. The study implies that GAL improved energy and nutrient availability of corn-soybean meal diet in broiler. The GAL supplementation to corn-soybean meal based diet can improve performance of broilers in early stages of growth.

Metabolizable Energy Contents and Amino Acid Availability values in the Full-Fat Seeds, Oil Meals and Oils of Canola (Canola전지종실과 유박 및 기름의 대사에너지 함량과 아미노산 이용률)

  • 이규호;심정석
    • Korean Journal of Poultry Science
    • /
    • v.17 no.2
    • /
    • pp.101-107
    • /
    • 1990
  • Apparent and true metabolizable energy (AME and TME) contents and true amino acid availability (TAAA) values of full-fat seed, oil meal and oil of canola were assayed employing mature Single Comb white Leghorn roosters. For AME, test diets containing 30% level of canola full-fat seed, oil meal, oil meal plus oil or 10% level of oil were fed for a 3-day adaptation period, followed by a 4-day fecal collection period. For TME and TAAA, 30g test diets were force-fed and total excreta were collected for 48 hours, following a 24 hour fasting period. Metabolizable energy values were corrected to zero nitrogen balance(AMEn and TMEn), Canola contained 4,485, 1,984,8,275 and 5,655kcal/kg of AMEn and 4,577, 2,103, 8,487 and 5,630kcal/kg of TMEn for full-fat seed, oil meal, oil and mixture of meal plus oil, respectirely. The mixtures of oil meal plus oil had significantly higher available energy contents than the full-fat seeds (p<0.01) . In general, TAAA values of full-fat seed were higher than those of oil meal.

  • PDF

Effects of Enzyme Treated Palm Kernel Expeller on Metabolizable Energy, Growth Performance, Villus Height and Digesta Viscosity in Broiler Chickens

  • Saenphoom, P.;Liang, J.B.;Ho, Y.W.;Loh, T.C.;Rosfarizan, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.4
    • /
    • pp.537-544
    • /
    • 2013
  • This study examined whether pre-treating palm kernel expeller (PKE) with exogenous enzyme would degrade its fiber content; thus improving its metabolizable energy (ME), growth performance, villus height and digesta viscosity in broiler chickens fed diets containing PKE. Our results showed that enzyme treatment decreased (p<0.05) hemicellulose and cellulose contents of PKE by 26.26 and 32.62%, respectively; and improved true ME (TME) and its nitrogen corrected value ($TME_n$) by 38% and 33%, respectively, compared to the raw sample. Average daily gain (ADG), feed intake and feed conversion ratio (FCR) of chickens fed on different dietary treatments in the grower period were not significantly different. Although there was no difference in feed intake (p>0.05) among treatment groups in the finisher period, ADG of chickens in the control (PKE-free diet) was higher (p<0.05) than in all treatment groups fed either 20 or 30% PKE, irrespective of with or without enzyme treatment. However, ADG of birds fed with 20% PKE was higher than those fed with 30% PKE. The FCR of chickens in the control was the lowest (2.20) but not significantly different from those fed 20% PKE diets while birds in the 30% PKE diets recorded higher (p>0.05) FCR. The intestinal villus height and crypt depth (duodenum, jejunum and ileum) were not different (p>0.05) among treatments except for duodenal crypt depth. The villus height and crypt depth of birds in enzyme treated PKE diets were higher (p<0.05) than those in the raw PKE groups. Viscosity of the intestinal digesta was not different (p>0.05) among treatments. Results of this study suggest that exogenous enzyme is effective in hydrolyzing the fiber (hemicellulose and cellulose) component and improved the ME values of PKE, however, the above positive effects were not reflected in the growth performance in broiler chickens fed the enzyme treated PKE compared to those received raw PKE. The results suggest that PKE can be included up to 5% in the grower diet and 20% in the finisher diet without any significant negative effect on FCR in broiler chickens.

Effects of Dietary Inclusion of Palm Kernel Cake and Palm Oil, and Enzyme Supplementation on Performance of Laying Hens

  • Chong, C.H.;Zulkifli, I.;Blair, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.7
    • /
    • pp.1053-1058
    • /
    • 2008
  • A total of 392 twenty eight week-old laying hens was used to study the effects of dietary inclusion of solvent-extracted palm kernel cake (PKC) (0%, 12.5% and 25%) and enzyme (mixture of mannanase, ${\alpha}$-galactosidase and protease) supplementation (0 kg/t, 1 kg/t and 2 kg/t) on the performance of laying hens. The levels of PKC did not significantly influence nitrogen corrected true metabolizable energy (TMEn) of the diets. Enzyme-supplemented PKC had significantly higher AME and TMEn values than PKC diets with no enzyme supplementation. Dietary inclusion of 12.5% and 25% PKC in the diets of laying hens did not adversely affect mean egg production or daily egg mass. However, layers consumed significantly more PKC-based diets and had significantly poorer feed conversion ratios (FCR) than controls. However, the feed intake and FCR of hens provided the 12.5% PKC-based diets with enzyme supplementation at 1 kg/t did not differ from the controls. Dietary inclusion of PKC or enzyme did not affect eggshell quality, but egg yolk colour was significantly paler when layers were fed the 25% PKC diet.

Nutritional Values of Rice Bran and Effects of Its Dietary Supplementations on the Performances of Broiler Chickens (생미강의 영양적 가치와 사료 내 첨가가 육계 성적에 미치는 영향)

  • Shin Y. K.;Kim K. E.;Shin S. C.;You S. J.;Kim S. K.;An B. K.;Kang C. W.
    • Korean Journal of Poultry Science
    • /
    • v.31 no.3
    • /
    • pp.145-150
    • /
    • 2004
  • Two experiments were conducted to evaluate the nutritional values of rice bran and to examine effects of its dietary supplementation on broiler performances. In the first experiment, true metabolizable energy(TME), nitrogen corrected true metabolizable energy(TMEn), and true amino acid availability(TAAA) values of the rice bran were determined by force-feeding sixteen roosters(ISA-Brown). In the second experiment, 3-week-old male broiler chickens(Avian) were divided into four groups and fed each one of four experimental diets containing 0, 5, 10 or 15% rice bran for 21 days. TME and TMEn values of the rice bran(dry matter basis) were 3.25 kcal/g and 3.12 kcal/g, respectively, and the average TAAA value of the 16 amino acids was 76.21%. The average feed intake and body weight gain of the birds fed diets containing rice bran were apparently greater than those of the control group although the differences were not significant statistically. From the results, it can be concluded that feed formulation using bioavailability values, such as TMEn and TAAA, is an effective method for protecting the high variation in growth performances and that rice bran can be used for broiler feeds to 15% without any significant negative effects.

Evaluation of the Nutritive Value of Local Defatted Rice Bran and Effects of Its Dietary Supplementation on the Performance of Broiler Chicks (국내산 탈지미강의 영양적 가치 평가와 사료 내 첨가가 육계 생산성에 미치는 영향)

  • Kim, E.J.;Ahn , B.K.;Kang, C.W.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.759-766
    • /
    • 2003
  • Two experiments were conducted to evaluate the nutritive values of defatted rice bran (DRB) and examine the effects of its dietary supplementation on broiler performances. In Experiment 1, to measure true metabolizable energy (TME), nitrogen corrected true metabolizable energy (TMEn), and true amino acid availability (TAAA), 30g of DRB sample was forced-fed to each of 16 ISA-Brown roosters followed by a 48h collection of excreta. The TME and TMEn values for DRB were 2.19 kcal/g and 2.05 kcal/g, respectively. The mean value of TAAA of the 15 amino acids in DRB was 77.29%. In Experiment 2, a total of 72 Avian broiler chicks were divided into 4 groups with 3 replicates of 6 birds per replicate, and fed one of the experimental diets containing 0, 5, 10 or 15% of DRB. Feed intake, weight gain, feed conversion rate, and body composition were measured for 3 weeks. Although there were no significant differences (P$\geq$0.05), body weight gain and feed intake of chickens fed a diet containing 15% DRB were slightly higher than those of the other groups. From these results, it can be concluded that feed formulation using TMEn and TAAA of DRB is an effective method for assuring feed quality and DRB can be supplemented to broiler rations up to 15% level.