• Title/Summary/Keyword: Nitrogen stress

Search Result 426, Processing Time 0.028 seconds

Effect of Examination-stress on Nitrogen Metabolism of College Students (시험스트레스가 대학생의 질소대사에 미치는 영향)

  • 김미경
    • Journal of Nutrition and Health
    • /
    • v.29 no.7
    • /
    • pp.788-805
    • /
    • 1996
  • This study was performed to investigate effects of examination-stress and protein supplementation on nitrogen metabolism and blood protein levels of Korean college students. Experiment was conducted at the beginning of a academic term and during midterm examination. During midterm examination, subjects were classified into two groups randomly : protein supplemental group(male n=6, female n=10) and placebo group(male n=4, female n=9). Protein capsules(2g/day) above 10% of indispensible amino acids requirement estimates were given to supplemental group for 10 days. At the begining of the term, male students(n=12) ingested 223.15mgN/kg/d, excreted 20.7mgN/kg/d in feces, and excreted 94.31mgN/kg/d in urine. Their apparent protein protein digestibility was 90.72%, true N balance was +100.11mgN/kg/d, and the mean maintenance N requirement of mixed Korena diet calculated was 112.13mgN/kg/d. Female students(n=19) ingested 171.44mgN/kg/d, excreted 22.13mgN/kg/d in feces, and excreted 122.92mgN/kg/d in urine. Their apparent protein digestibility was 86.76%, true N blance was + 18.39mgN/kg/d, and the mean maintenance N requirement calculated was 135.31mgN/kg/d. Blood levels of serum total protein, albumin, and BUN were within normal range. During midterm examination, fecal and urinary N excretions of female subjects(n=19) were increased, especially urea N markedly, and urea N/creatinine N ratio was augumented significantly. Apparent protein digestibility of male subjects(n=10) was decreased. Examination-stress showed 8.05mgN/kg/d (7.2%) increase of mean maintenance N requirement in male and 8.55mgN/kg/d(6.3%) increase in female students in comparison with that of the beginning of the term. Serum total protein and albumin levels showed no significant change, but serum transferrin level of female were decreased significantly. During midterm examination, females supplemented with protein capsules(2g/d)had no significant increase in fecal and urinary N excretions.

  • PDF

Cation and Nitrogen Contents, and Growth of Soybean against Underground Water Level at Reproductive Stage (생식생장기에 지하수위 처리가 콩의 생육과 질소 및 몇가지 양이온 함량에 미치는 영향)

  • Park, Gwan-Soo;Ahn, Tae-Hwan;Cho, Jin-Woong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.2
    • /
    • pp.225-230
    • /
    • 2009
  • This study was conducted to response the growth, seed yield, nitrogen content and different cation content of two soybean, flooding-tolerant cv. Pungsannamulkong (PNSK) and flooding-sensitive cv. Tawonkong (TWK) when these were subjected to flooding stress at R1 stage for cultivation in paddy field. Flooding, underground water levels (UWL) of 0 cm, 10 cm and 40 cm, was experimented from flowering time to harvest time. The dry matter and seed yield of soybean with UWL of 0 or 10 cm declined in comparison with UWL of 40 cm and these were more reduction in TWK than in PNSK. The amount of nitrogen uptake decreased in higher UWL and there was a high significant relationship $(R^2=0.872)$ between nitrogen content and seed yield at flooding stress. K content of leaf and stem in soybean plants had a small change with UWL but Ca content had a decrease (leaf and stem) or increase (root). Mn and Fe content were increased at higher UWL and were more in TWK than in PNSK.

Deformation Characteristic by Compression in High-Nitrogen Austenitic Stainless Steel (고질소강 오스테나이트계 스테인레스강의 압축변형특성)

  • Lee, J.W.;Kim, D.S.;Kim, B.K.;Lee, M.R.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.139-141
    • /
    • 2007
  • Compression tests were carried out to investigate morphologies of compressed specimen, deformation microstructure and stress-strain relation in high-nitrogen austenite stainless steel. Tests were performed under a wide range of temperature and, with true strain rates up to $\dot{\varepsilon}$ =0.05, 0.1, 0.5 and $1.0s^{-1}$. The activation energy of loading force was equal to plastic deformation energy within the temperature range of $900^{\circ}C$ to $1250^{\circ}C$. Dynamically recrystallized grain size decreased with an increasing strain rate and temperature. Flow stresses and deformation microstructures, were used to quantify the critical strain rate and recrystallized grain size. The grain size versus strain rate-temperature map obtained in the study was in good agreement with the deformation microstructures of compressed specimens.

  • PDF

Transient Thermal Behaviors of Melt Processed Superconductors with Artificial Holes During the Cooling in Liquid Nitrogen (액체질소 냉각 시 임의의 홀을 가진 초전도체의 열응력 해석)

  • Jang, G.E.;Lee, H.J.;Kim, C.J.;Han, Y.H.;Sung, T.H.
    • Progress in Superconductivity
    • /
    • v.11 no.1
    • /
    • pp.52-56
    • /
    • 2009
  • Temperature distributions and thermal stresses were calculated and analyzed to investigate the effect of the artificial holes to the transient behaviors of the superconductors which was cooled in liquid nitrogen. Three dimensional finite element method was used to calculated the transient temperature and thermal stresses in the superconductors. The cooling speed of the superconductors with holes is faster than those without holes. Because the thermal stresses calculated in the superconductors can be relaxed by the distributed holes, the volume of the peak tensile stress decreases during the cooling in liquid nitrogen. If optimal metal, which can maintain the relaxation of thermal stresses, is used to fill and reinforce the artificial holes, the probability of failure of the superconductors may be decreased by the decrease of volume of peak tensile stress.

  • PDF

Fabrication of a mask for X-ray lithography Using SiN membrane and WTi Absorber (SiN 멤브레인과 WTi 흡수체를 이용한 X-선 노광용 마스크 제작)

  • 이문석;김오현
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.12
    • /
    • pp.115-121
    • /
    • 1995
  • A mask for x-ray lithography is fabricated with SiN membrane and WTi absorber. SiN membrane is deposited by plasma enhanced chemical vapor deposition, and the stress of SiN membrane is controlled to be less than 100 MPa by rapid thermal annealing. WTi absorber is reactively deposited by DC-magnetron type sputter, and the working gases are argon and nitrogen. Added nitrogen is contributed to the stress of WTi absorber. The stress of WTi absorber is controlled to be less than $\pm$ 100 MPa by controlling the deposition pressure. 10$\mu$m WTi pattern is delineated on SiN membrane by dry etching technique.

  • PDF

The Characteristics of Electrical Breakdown of Dielectric Paper and Cable under mechanical stress (기계적 응력상태에서 절연지 및 케이블의 전기절연 특성)

  • Kim, Young-Seok;Kwag, Dong-Soon;Kim, Hae-Jong;Kim, Sang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.3-6
    • /
    • 2003
  • The electrical and mechanical properties of dielectric paper and cable at cryogenic temperature have been investigated to optimum insulating design of high-Tc superconducting(HTS) cable. From the results, Tensile strength of PPLP in liquid nitrogen was high more than that of air, but tensile strain could know that decrease sharply. According as tensile strength increases, the breakdown stress of PPLP in liquid nitrogen was decreased because PPLP was degradated. According as bending radius multiple is decrese, breakdown voltage decreased sharply. And bending radius multiple is thought that more than about 25 is suitable.

  • PDF

Crystal properties of wurtzite GaN grown under various nitrogen plasma conditions (여러 질소 플라즈마 상태에서 성장한 wurtzite GaN의 결정특성)

  • 조성환;김순구;유연봉
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.4
    • /
    • pp.354-358
    • /
    • 1997
  • Crystal properties of wurtzite GaN films grown on $Al_2O_3$(0001) substrates under various nitrogen pressure and plasma power by electron cyclotron resonance molecular beam epitaxy were investigated by full width at half maximum of X-ray diffraction peak and scanning electron microscope. It was found that the nitrogen pressure has a large effect on the FWHM value of XRD, and the GaN film grown under the optimum nitrogen pressure contains high density of dislocations. These results suggest that the crystal quality is sensitive to the plasma source conditions and that the relaxation of stress depends of V/III ratio. However, substrate-surface nitridation has little effect on the relaxation of misfit stress.

  • PDF

A Study on Tensile Strength of the 3D Printing Product According to the Nitrogen Concentration of Chamber Inside (챔버 내부의 질소 농도에 따른 3D프린팅 출력물의 인장 강도에 관한 연구)

  • Lee, Song Yeon;Huh, Yong Jeong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.103-107
    • /
    • 2022
  • Scaffolds are the structures that safely protect sensors in various parts of the body. Because of scaffolds must protect sensors from load, the tensile strength of the scaffolds must be higher than 750 kgf/cm2. Currently, the tensile strength of scaffolds made with the 3d printer is 714 kgf/cm2. We confirm that the tensile strength of the scaffolds increase using air with high nitrogen concentration. In this study, we conducted experiments to find nitrogen concentrations in which the tensile strength of the specimen is higher than 750 kgf/cm2. The nitrogen control device and the nitrogen concentration sensor were installed in the chamber type 3d printer. The nitrogen concentration inside the 3d printer was changed by 5 % from 80 % to 100 %. Specimens of ASTM D 638 standard were produced under changed nitrogen concentration. We measured the tensile strength of specimens. We compared the tensile strength of specimens produced under each nitrogen concentration. We confirmed that when air with nitrogen concentration of 90 % was used, the tensile strength of scaffolds were 762 kgf/cm2.

Overexpression of S-Adenosylmethionine Synthetase in Recombinant Chlamydomonas for Enhanced Lipid Production

  • Jeong Hyeon Kim;Joon Woo Ahn;Eun-Jeong Park;Jong-il Choi
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.310-318
    • /
    • 2023
  • Microalgae are attracting much attention as promising, eco-friendly producers of bioenergy due to their fast growth, absorption of carbon dioxide from the atmosphere, and production capacity in wastewater and salt water. However, microalgae can only accumulate large quantities of lipid in abiotic stress, which reduces productivity by decreasing cell growth. In this study, the strategy was investigated to increase cell viability and lipid production by overexpressing S-adenosylmethionine (SAM) synthetase (SAMS) in the microalga Chlamydomonas reinhardtii. SAM is a substance that plays an important role in various intracellular biochemical reactions, such as cell proliferation and stress response, and the overexpression of SAMS could allow cells to ithstand the abiotic stress and increase productivity. Compared to wild-type C. reinhardtii, recombinant cells overexpressing SAMS grew 1.56-fold faster and produced 1.51-fold more lipids in a nitrogen-depleted medium. Furthermore, under saline-stress conditions, the survival rate and lipid accumulation were 1.56 and 2.04 times higher in the SAMS-overexpressing strain, respectively. These results suggest that the overexpression of SAMS in recombinant C. reinhardtii has high potential in the industrial-scale production of biofuels and various other high-value-added materials.

Analysis of Creep Effective Stress in Austenitic Heat Resistant Steel (오스테나이트계 내열강의 크리프 유효응력 해석)

  • Nam, Ki-Woo;Park, In-Duck
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1317-1323
    • /
    • 2002
  • This paper describes the comparison of calculated effective stress with experimental one in austenitic heat resistant steels, STS310J1TB and STS310S with and without a small amount of Nb and N. Based on a solute atoms diffusion model, contribution from soluble nitrogen to the high-temperature strength was numerically examined for austenitic heat-resisting Fe-Cr-Ni-N(STS310J1TB) and Fe-Cr-Ni (STS310S) alloys. The solute atmosphere dragging stress of dislocation was calculated in optional dislocation velocity of STS310J1TB and STS310S at $650^{\circ}C$, $675^{\circ}C$ and $700^{\circ}C$. As a result of the numerical calculation, the solute atmosphere dragging stress of STS310J1TB was about 50 times larger than that of STS310S. When the temperature became high, the maximum value of solute atmosphere dragging stress was small and the velocity of moving dislocation was fast. From the relationship between the dislocation rate and the solute atmosphere dragging stress, the relation of both was proportional and the inclination is about 1 in the level with low velocity of moving dislocation. From above results, the mechanism of dislocation movement in STS310J1TB was the solute atmosphere dragging stress. The solute atmosphere dragging stress, which was calculated from the numerical calculation was close to the effect stress in stress relaxation tests.