• Title/Summary/Keyword: Nitrogen gradient

Search Result 116, Processing Time 0.021 seconds

Nocturnal Inversion Layer observed by Tethersonde and AWS System and its Relation to Air Pollution at Ulsan (Tethersonde와 기상탑 관측 자료를 이용한 울산지역 야간 역전에 따른 대기오염도 변화와의 관계)

  • Lim Yun-Kyu;Kim Yoo-Keun;Oh In-Bo;Song Sang-Keun
    • Journal of Environmental Science International
    • /
    • v.14 no.6
    • /
    • pp.555-563
    • /
    • 2005
  • This study presents the characteristics of nocturnal inversion layer and their effect on the concentration variations of surface air pollutants using tethersonde and automatic weather station (AWS, 2 layer tower) system in Ulsan during 2003, The method for the distinction of inversion intensity was decided based on the sum of nocturnal temperature gradient. As the results, there was a close correlation (correlation coefficient of 0,76) between the maximum inversion height obtained from tethersonde and the sum of nocturnal temperature gradient. The air pollutant concentration was also directly proportional to the inversion intensity. When the inversion intensity was strong in the nighttime, ozone $(O_3)$ concentration was lower, while nitrogen dioxide $(NO_2)$ concentration was higher. The carbon monoxide (CO) concentration was gradually higher according to the nocturnal inversion intensity, whereas sulfur dioxide $(SO_2)$ concentration was relatively constant. In addition, we found that there was no correlation between the inversion intensity and TSP concentration.

Characteristic Study of Micro-Nozzle Performance and Thermal Transpiration Based Self Pumping in Vacuum Conditions

  • Jung, Sung-Chul;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.866-870
    • /
    • 2008
  • In this study, we designed cold gas propulsion system with minimum 0.25 mm nozzle and micro-thrust measurement system to analyze flow characteristic of micro propulsion system in ambient and vacuum condition. Argon and Nitrogen are used for propellant and the result of experiments is compared with CFD analysis and theory. But there is a point where reduced scale versions of conventional propulsion systems will no longer be practical. Therefore, a fundamentally different approach to propulsion systems was taken. That is thermal transpiration based micro propulsion system. It has no moving parts such as lubricants, pressurizing system and can pump the gaseous propellant by temperature gradient only(cold to hot). We are advancing basic research of propulsion system based on thermal transpiration in vacuum conditions and had tried experiment process and theoretical access in advance. To characterize membrane of Knudsen pump, we select Polyimide material that has low thermal conductivity(0.29 W/mK) and can stand high temperature($300^{\circ}C$) for long time. And we fabricated hole diameter 1, 0.5, 0.2, 0.1 mm using precision manufacturing. Experimental results show that pressure gradient efficiency of Knudsen pump is increased to maximum 82% according to Knudsen number and thick membranes are more effective than thin membranes in transition flow regime.

  • PDF

Shift in benthic diatom community structure and salinity thresholds in a hypersaline environment of solar saltern, Korea

  • Bae, Hanna;Park, Jinsoon;Ahn, Hyojin;Khim, Jong Seong
    • ALGAE
    • /
    • v.35 no.4
    • /
    • pp.361-373
    • /
    • 2020
  • The community dynamics of benthic diatoms in the hypersaline environment are investigated to advance our understanding how salinity impacts marine life. Diatoms were sampled in the two salterns encompassing salt Ponds, ditches, and seawater reservoirs (n = 11), along the salinity gradient (max = 324 psu), and nearby tidal flats (n = 2). The floral assemblages and distributions across sites and stations showed great variations, with a total of 169 identified taxa. First, not surprisingly, higher diversity of benthic diatoms was found at natural tidal flats than salterns. The saltern diatoms generally showed salinity dependent distributions with distinct spatial changes in species composition and dominant taxa. Biota-environment and principal component analysis confirmed that salinity, mud content, and total nitrogen were key factors influencing the overall benthic community structure. Some dominant species, e.g., Nitzschia scalpelliformis and Achnanthes sp. 1, showed salinity tolerance / preference. The number of diatom species at salinity of >100 psu reduced over half and no diatoms were found at maximum salinity of 324 psu. The highest salinity for the observed live diatoms was 205 psu, however, a simple regression indicated a theoretical salinity threshold of ~300 psu on the survival. Finally, the indicator species were identified along the salinity gradient in salterns as well as natural tidal flats. Overall, high species numbers, varying taxa, and euryhaline distributions of saltern diatoms collectively reflected a dynamic saltern ecosystem. The present study would provide backgrounds for biodiversity monitoring of ecologically important microalgal producers in some unique hypersaline environment, and elsewhere.

Effects of Nitrogen Application on the Patterns of Amino Acids, Nitrogen Contents and Growth Response of Four Legume Plants under Saline Conditions (염분 환경하에서 4종 콩과식물의 생장, 아미노산 및 질소함량에 미치는 질소원의 영향)

  • 배정진;추연식;김진아;노광수;송종석;송승달
    • The Korean Journal of Ecology
    • /
    • v.26 no.3
    • /
    • pp.135-142
    • /
    • 2003
  • Four legume plants showed better growth by the external nitrogen supply rather than the symbiotic nitrogen fixation only under salt additions. In case of Glycine max and Phaseolus angularis, total nitrogen contents decreased by high salinity level but their amino acid levels significantly increased with the increase of salt treatments and indicated high soluble-/insoluble-N ratios. Cassia tora and Albizzia julibrissin contained less amino acids than G. max and P. angularis but total N (esp. insoluble N fraction) increased with higher salt levels. Asparagine occurred as a main amino acid especially in G. max and P. angularis and can be seen as potential N-storage form in these plants. It might be play an important role for the osmoregulation mechanism under the saline condition. Meanwhile, to investigate what kinds of nitrogen sources are effective for overcoming salt stress on soybean plants, various N forms and concentrations (NH₄NO₃-N, NO₃-N, NH₄NO₃-N; 2.5 and 5 mM) were additionally supplied to the salt gradient medium. Soybean plants treated with NH₄NO₃-N showed the best growth up to 40 mM NaCl and NO₃- fed plants indicated good growth even at 80 mM NaCl treatments. Contrary to NH₄NO₃- and NO₃- fed plants, NH₄/sup +/- fed plants showed remarkable growth reduction and died by 40 and 80 mM NaCl treatments after the first harvest (15th day). Consequently, these results suggest that salt excluding and resistant capacities of soybean plants under NaCl treatments are increased in order of NH₄ - N, control, NO₃- N and NH₄NO₃- N depending on N concentration except NH₄- N treatments.

Annealing Effects on Concentration Profiles of Deep Energy Levels in Platinum-diffused Silicon (백금 확산 실리콘의 깊은 에너지 준위의 농도분포에 대한 열처리효과)

  • Kwon, Young-Kyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.3
    • /
    • pp.207-212
    • /
    • 2007
  • The concentration profiles of deep energy levels($E_c$ -0.23e V, $E_v$+0.36e V and $E_c$ -0.23e V) in platinum-diffused silicon have generally a sharp gradient in the vicinity of the surface of the silicon wafer. In this work two efficient methods are proposed to obtain the uniform concentration profiles throughout the silicon wafer. One is that the platinum diffusion is carried out at $1000^{\circ}C$ for 1h in oxygen atmosphere. In this case the values of obtained uniform concentration, $1{\times}10^{15}cm^{-3}$ for the $E_c$ -0.23e V level, and 1{\times}10^{14}cm^{-3}$ for the $E_c$ -0.52e V level, are very restricted, respectively. The other is two-step annealing process. The platinum diffusion is carried out at $850{\sim}1100^{\circ}C$ in a nitrogen ambient for 1h and then the annealing is performed at $1000^{\circ}C$ in oxygen ambient after removing platinum-source from the platinum diffused samples. The advantage of this method is that the uniform concentration of these levels required power devices can be controlled by setting the desired temperatures when the platinum diffusion is carried out in nitrogen ambient.

Thermal Effects on Cryogenic Cavitating Flows around an Axisymmetric Ogive

  • Shi, Suguo;Wang, Guoyu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.4
    • /
    • pp.324-331
    • /
    • 2010
  • Cavitation in cryogenic fluids generates substantial thermal effects and strong variations in fluid properties, which in turn alter the cavity characteristics. In order to investigate the cavitation characteristics in cryogenic fluids, numerical simulations are conducted around an axisymmetric ogive in liquid nitrogen and hydrogen respectively. The modified Merkle cavitation model and energy equation which accounts for the influence of cavitation are used, and variable thermal properties of the fluid are updated with software. A good agreement between the numerical results and experimental data are obtained. The results show that vapor production in cavitation extracts the latent heat of evaporation from the surrounding liquid, which decreases the local temperature, and hence the local vapor pressure in the vicinity of cavity becomes lower. The cavitation characteristics in cryogenic fluids are obtained that the cavity seems frothy and the cavitation intense is lower. It is also found that when the fluid is operating close to its critical temperature, thermal effects of cavitation are more obviously in cryogenic fluids. The thermal effect on cavitation in liquid hydrogen is more distinctively compared with that in liquid nitrogen due to the changes of density ratio, vapour pressure gradient and other variable properties of the fluid.

Spatial Variations of Nutrient Concentrations in Pennsylvania Watersheds (펜실바니아 유역 수질의 공간적 변이에 관한 연구)

  • Chang, Heejun
    • Journal of the Korean Geographical Society
    • /
    • v.37 no.5
    • /
    • pp.536-550
    • /
    • 2002
  • This paper investigated the spatial variations of nitrogen (N) and phosphorus (P) concentrations for 38 watersheds in Pennsylvania using 7 years of hydroclimatic and water quality data. Watersheds with higher percentage of urban and agricultural land uses exhibited larger variations of nutrient concentrations than forested watersheds. N and P concentrations were strongly associated with agricultural and urban land uses, respectively. The principle component analysis identified three components - land use and topography related, hydroclimate related factors, and size. Results of partial redundancy analysis showed the joint effect of climate, land cover, and topographic variables for explaining 28.1% of the variance of nitrogen concentrations and a pure effect of land cover for explaining 41.8% of total variance of P concentrations. The geographical pattern of statewide nutrient concentrations demonstrated a strong spatial gradient; low concentration in northwestern PA and high concentrations in southeastern PA. This pattern is associated with combined effects of hydroclimate, land use, topography, and water quality at the regional scale.

Study on Flow behavior of Liquid Nitrogen for Porous Media in Square-section Cylinder (사각 기둥 실린더 내부 다공성 매질에서의 액화질소의 거동에 대한 연구)

  • Choi, Sung Woong;Lee, Woo Il
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.1
    • /
    • pp.26-34
    • /
    • 2013
  • The multiphase flow analysis related to phase change can be adapted to lots of areas such as evaporation and condensation has many interesting branches due to complicated phenomenon. In this study, the experimental investigation of cryogenic liquid in the porous media with various densities was shown how the cryogenic liquid behaves in the porous structure. For this study, permeability behaviors under different applying pressure of the glass wool with different bulk densities are discussed. Experimental investigation on the behavior of cryogenic liquefied nitrogen in the porous media is conducted. The result was that the non linearity of pressure gradient with location is increased and the permeability is decreased as the bulk density of glass wool increased. Lastly, simulation results with CFD commercial package program are used to realize the cryogenic liquid's flow in porous media to compare the finding with experimental results.

Effect of Elevated TEX>$CO_2$ and Temperature on Nitrogen Responses in Rice (수도의 질소반응에 미치는 고$CO_2$농도 및 온도의 영향)

  • 김한용
    • Korean Journal of Plant Resources
    • /
    • v.11 no.2
    • /
    • pp.119-123
    • /
    • 1998
  • Effects of elevated CO2 and temperature on nitrogen (N) uptake , leaf N concentration, N partitioning , N use efficiency (NUE) and grain yield of pot and field grown rice (Oryza sativa. L.cv. Chukwangbyeo) under canopy-like conditions were studied over three years. Rice plants were grown in pots and in the field in temperature gradient chambers containing either ambient(350ppm) or elevated CO2 concentrations (690 or 650ppm) in conbination with either four or seven temperature regimes ranging form ambient temperature(AT) to AT plus 3$^{\circ}C$. There were three N supplies 94g or 6g m-2 to 20g or 48g m-2.Elevated CO2 increased N uptake in field-grown rice ; the magnitude of this effect was thelargest (+15%) at the highest N level. However, in pot-grown rice, N uptake was suppressed with the effect was the largest at high N levels. Leaf N concentration declined at elevated CO2 mainly due to a decrease in N partitiioning to the leaf blades. Air temperature had little effect on the N parameters mentioned previously, wherease NUE for spikelet production declined rapidly with increased temperature irrespective of CO2 concentration. The response of the biomass to elevated CO2 varied with N level, with the greatest response at 20g N m-2 (+30%) . At AT, where high temperature-induced sterility was generally not observed, elevated CO2 increased yield. However, the magnitude of this effect varied greatly (2-39%) with N level, and was mainly dependent on the magnitude of the increase in spikelet number.

  • PDF

Case Study for High Ozone Episode day during Summertime in Busan (부산지역 여름철 고농도 오존 발생의 사례 연구)

  • Jeon, Byung-Il
    • Journal of Environmental Impact Assessment
    • /
    • v.12 no.4
    • /
    • pp.303-313
    • /
    • 2003
  • This study was carried out to survey the high ozone episode of summertime in Busan. The selected day was July 18, 1999 and August 24, 2001 which recorded exceed to 12ppb/hr at 3 station in Busan simultaneously. In case July 18, 1999, thick cloud and variable wind made weak ozone concentration during morning hour. And increase of ozone concentration by revolution of mixed layer for morning hour did not occur in this case study day. Photochemical reaction by strong radiation after 1100LST made sharp increase rate of ozone concentration(50ppb/hr). In case August 24, 2001, the meteorological condition of this day was not general wind with gradient force, very clear day with less cloud amount, high insolation and sunshine. Dongsamdong, Beomcheondong, Daeyeondong, and Sinpyeongdong had double peak which twice maximum concentration in the early afternoon and late afternoon. Ozone concentration of this day was in inverse proportion to Nitrogen oxide strongly. Ozone concentration exceed to 60ppb/hr occurred at 1400LST, continued to 2300LST.