• Title/Summary/Keyword: Nitrogen fixing

Search Result 156, Processing Time 0.026 seconds

Effects of rice straw application on the biological nitrogen fixation of paddy field -2. Effects of rice straw annual application on the biological activities and nitrogen fixing microbial flora (논토양의 생물적(生物的) 질소고정(窒素固定)에 미치는 볏짚시용효과(施用效果) -II. 질소고정미생물(窒素固定微生物) flora와 그 활성(活性)에 미치는 볏짚연용효과(連用效果))

  • Yoo, Ick-Dong;Matsuguchi, Tatsuhiko
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.4
    • /
    • pp.443-449
    • /
    • 1988
  • The effects of rice-straw annual application on nitrogen fixing microbial flora in the soil of paddy fields and their biological activities were investigated. Experiments were performed in both NPK fertilizer applied soil and rice-straw applied soil of Agricultural Station in Aomori-ken, Japan. The following results were obtained. 1. The ARA by phototrophs was significantly increased in both soil plots. From the soil plot in which 300ppm-nitrogen was applied, the increase of ARA began to be seen from three weeks later. On the other hand, 33ppm-nitrogen applied soil plot and non-nitrogen applied soil plot showed the ARA increase from the beginning. The amount of ARA by non-phototrophs was only one-tenth of that by phototrophs. 2. For the first three weeks, the phototrophic bacteria (mainly Rhodopseudomonas) were predominant in both soil plots. Since then, as the ARA rapidly increased, the proliferation of blue-green algae forming heterocysts was remarkably promoted. Such effects were more distinct in the rice-straw annually applied soil plot than in the NPK fertilizer annually applied soil plot. 3. The degree of proliferation of blue-green algae depended on the amount of applied nitrogen. While Anabaena, Nostoc and Cylindrospermum were largely proliferated in the non-nitrogen applied soil plot, Cylindrospermum and Calothrix were in the 33ppm-nitrogen applied soil plot, but Calothrix tended to predominated in the 100ppm-nitrogen applied soil plot.

  • PDF

Changes of Enzyme Activity in Nitrogen Metabolism on Induced Association of N. muscorum with Cultured Tobacco Cells (N. muscorum과 담배 배양세포의 공생유도에 따른 질소대사에 관여하는 효소활성의 변화)

  • 정현숙
    • KSBB Journal
    • /
    • v.5 no.2
    • /
    • pp.151-158
    • /
    • 1990
  • Investigations on the liability of nitrogen usuage by Nostoc muscorum that has nitrogen fixing ability, and cultured tobacco cells as they were associately cultured on nitrogen-free media and effects of polyamine on the associated culture condition were carried out. In addition, measurement on the activity of nitrate reductase, glutamine synthetase, glutamate dehydrogenase and glutamate synthase that take part in the metabolic pathway of nitrogen fixation product were performed. Among enzymes participating in the metabolic pathway of nitrogen fixation products, the activity of nitrogen reductase stimulated five times in associated culture, and that of glutamine synthetase of N. muscorum increased two times after heterocyst differentiated. Activity of glutamate dehydrogenase increased markedly when cultured tobacco cells were solely incubated on nitrogen-free media, but inhibited when cultured associately. And, glutamate synthase was showed the highest activity in 0.1 mM of spermine treated group.

  • PDF

Associated Nitrogen Fixation in the Rhizosphere of Rice in Saline and Reclaimed Saline Paddy Soil -II. Identification of associative heterotrophic nitrogen fixing bacteria in histosphere of grasses and rice (간척지토양(干拓地土壤)의 수도근권(水稻根圈)에서 협생질소고정(協生窒素固定)에 관(關)한 연구(硏究) -제(第) II 보(報). 혈청면역학적(血淸免疫學的) 방법(方法)에 의한 협생질소고정세균(協生窒素固定細菌)의 분리(分離))

  • Lee, Sang-Kyu;Suh, Jang-Sun;Ko, Jae-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.2
    • /
    • pp.193-197
    • /
    • 1987
  • Associative heterotrophic nitrogen fixing bacteria were identified by immunodiffusion method in the histosphere of Planta-ginaceae, Caryophllaceae, Gramineae, and two types of rice cultivars. Twenty four strains associative heterotrophic bacteria with high ARA (more than 10nmole/tube/hr) were isolated from the histosphere of grasses and rice.* Those strains were related with 8 species of Azospirillum, 11 species of Pseudomonas, 2 species of Klebsiella and 2 species of Agrobacterium. Among them Azospirillum sp. and Pseudomonas sp. were predominant in histosphere of grasses and rice cultivars. From the histosphere of Oryza sativa, and Sagina maxima, the strains of Azospirillum, Pseudomonas, Klebsiella, and Agrobacter were identified while Pseudomonas was identified from Ischaemum anthephoroides, Plantago lanceolata, Miscanthus sacchuriflorum, and only Azospirillum was identified from Zoisia sinica, respectively. Associative nitrogen fixing heterotrophic bacteria were more abundant in the histosphere of Oryza sativa and Sagina maxima than that of other grasses grown in saline and reclaimed saline paddy soil.

  • PDF

Ureide Distribution in Nitrogen Fixing Soybean Plant under External Phosphorus Limitation (인산결핍 조건하에서 질소고정식물체내의 Ureide 분배)

  • Sa, Tong-Min
    • Applied Biological Chemistry
    • /
    • v.40 no.3
    • /
    • pp.232-237
    • /
    • 1997
  • Soybean plants inoculated Bradrhizobium japonicum MN 110 were grown in outdoor perlite pots with nitrogen free nutrient solution containing 1.0 mM-P(control) and 0.05 mM-P(stress) and harvested at 28, 35, 42 and 49 days after transplanting (DAT) to examine the effect of phosphorus deficiency on ureide concentration of and distribution to diffrent plant organ in nitrogen fixing soybean plant during the vegetative growth. Total dry mass of control plants increased 8.9 fold and that of phosphorus deficient plant increased 2.7 fold during the experimental period. Phosphorus deficiency reduced total phosphorus and nitrogen accumulation by 80%,40% respectively, at 28 DAT and 93%, 84%, respectively, at 49 DAT. Nitrogen concentration was reduced by phosphorus deficiency in all tissues with leaf and stem tissues affected to a greater degree than nodule and root tissues at every sampling date. Phosphorus deficiency significantly reduced soluble reduced-N and ureide-N concentration in leaf and stem but did not affect those in root. The proportion of soluble reduced-N in leaf was reduced from 60% to 50% but increased from 10% to 20% in the roots. The proportion of ureide-N in leaf of control plants was higher than that in phosphorus deficient plants, whereas, roots of phosphorus deficient plants contained a higher propotion of ureide-N than those of control plants. These indicated that phosphorus deficiency not only inhibit nitrogen fixation of nodules but also restrict the translocation of fixed nitrogen out of the root system into the xylem.(Received April 4, 1997; accepted May 2, 1997)

  • PDF

Effects of Nitrogen and Oxygen Supply on Production of $Poly-{\beta}-Hydroxybutyrate$ in Azotobacter chroococcum

  • Lee, In-Young;Stegantseva, Ellen-M.;Savenkova, Ludmila;Park, Young-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.2
    • /
    • pp.100-104
    • /
    • 1995
  • Production of $poly-{\beta}-hydroxybutyrate$ (PHB) in a strain of Azotobacter chroococcum, a nitrogen-fixing bacteria, was investigated at various levels of nitrogen and oxygen. Feeding nitrogen source increased both cell growth and PHB accumulation. Oxygen supply appeared to be one of the most important operating parameters for PHB production. Both cell growth and PHB accumulation increased with the sufficient supply of air in the fed-batch fermentation of the strain. However, it was also noted that keeping the oxygen level under limited condition was critical to achieve high PHB productivity. A high titer of PHB (52 g/l) with a high cellular content (60%) was obtained after 48 hr of fed-batch operation by controlling the oxygen supply. Dual limitation of nitrogen and oxygen did not further increase the PHB accumulation probably due to the greater demand for reducing power and ATP for nitrogen fixation.

  • PDF

Effect of Air Flow on Chemical Properties of Cured Leaves in Bulk Curing Process (황색종 Bulk건조과정의 송풍량과 건조엽의 화학성분 특성)

  • 이철환;진정의
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.21 no.2
    • /
    • pp.182-187
    • /
    • 1999
  • A bulk curing experiment was carried out to evaluate the effect of air flow reduction in the bulk barn from color fixing stage in the chemical properties of cured leaves, The air flow was controlled by reducing air velocity of a blower from 0.3m/sec to 0.2m/sec using a boltage regulator(Slidac). The bulk curing before color fixing stage was processed in the conventional curing method. Reduction of air circulation in bulk barn did not affected so much on change of the contents of the main chemical components in cured leaved, such as nicotine, total sugar, total nitrogen, petroleum ether extract, and organic acids. Only a slight increase in essential oil contents, such as solanone, damascenone, damascone, $\beta$-ionone, and megastigmatrienone isomer, could be observed in leaves cured in the reduced air flow.

  • PDF

Effects of Butachlor on the Growth of PurpleNnon-sulfur Bacteria (홍색 비유황광합성 세균에 미치는 제초제 Butachlor의 영향)

  • 이경미;이현순
    • Korean Journal of Microbiology
    • /
    • v.29 no.2
    • /
    • pp.130-135
    • /
    • 1991
  • The effects of a herbicide butachlor[2-chloro-2', 6'-diethyl-N-(butoxymethyl) acetanilide] on the growth of the purple non-sulfur bacteria were investigated. The butachlor inhibited the growth of all species tested by 18-51%, except Rhodospirillum rubrum at concentrations of M, which would be field capacity. The photosynthetic growth rate of the species in the presence of butachlor was influenced by the nitrogen source. Cultures supplied with (NH&S04 showed a somewhat higher growth rate than those fixing dinitrogen, but they were more susceptible to butachlor (26-51%). On the contrary, butachlor enhanced the growth rate of Rhodospirillum rubrum in nitrogen gas conditions. When the culture was performed in medium with butachlor as the carbon source, the cells of fixing dinitrogen showed a higher exhaustion of butachlor than those supplemented with (N&)2S04, which exhaustion was examined by a decrease of the major absorbance at 213 nm and 260 nm. The exhaustion of butachlor as the carbon source had relation with the growth of the cells. The alkalization of culture supplemented with nitrogen gas was found in the cells treated with butachlor or untreated. The butachlor affected the carotenoid region but bacteriochlorophyll remained unaffected.

  • PDF

Role of Diazotrophic Bacteria in Biological Nitrogen Fixation and Plant Growth Improvement

  • Shin, Wansik;Islam, Rashedul;Benson, Abitha;Joe, Manoharan Melvin;Kim, Kiyoon;Gopal, Selvakumar;Samaddar, Sandipan;Banerjee, Somak;Sa, Tongmin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.1
    • /
    • pp.17-29
    • /
    • 2016
  • Though there is an abundant supply of nitrogen in the atmosphere, it cannot be used directly by the biological systems since it has to be combined with the element hydrogen before their incorporation. This process of nitrogen fixation ($N_2$-fixation) may be accomplished either chemically or biologically. Between the two elements, biological nitrogen fixation (BNF) is a microbiological process that converts atmospheric di-nitrogen ($N_2$) into plant-usable form. In this review, the genetics and mechanism of nitrogen fixation including genes responsible for it, their types and role in BNF are discussed in detail. Nitrogen fixation in the different agricultural systems using different methods is discussed to understand the actual rather than the potential $N_2$-fixation procedure. The mechanism by which the diazotrophic bacteria improve plant growth apart from nitrogen fixation such as inhibition of plant ethylene synthesis, improvement of nutrient uptake, stress tolerance enhancement, solubilization of inorganic phosphate and mineralization of organic phosphate is also discussed. Role of diazotrophic bacteria in the enhancement of nitrogen fixation is also dealt with suitable examples. This mini review attempts to address the importance of diazotrophic bacteria in nitrogen fixation and plant growth improvement.

Influences of Rice and Barley straw Application in the Rice Rhizosphere (수도근권(水稻根圈) 환경(環境)에 미치는 볏짚과 보릿집 시용(施用)의 영향(影響))

  • Lim, Sang-Soon;Kim, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.4
    • /
    • pp.434-442
    • /
    • 1988
  • This study has been made to investigate the influences of organic matter on the soil composition, nitrogen fixing organism, soil enzyme activity and nitrogen fixing activity in the paddy rice rhizosphere when rice and barley straw were applied. The results are summarized as follows: 1. The pH in the submerged soil was increased from ear formation stage to harvesting. 2. In the rhizosphere, $Fe^{{+}{+}}$ content was decreased according to the growing stage, while increased in the nonrhizosphere. 3. In the initial stage, rhizosphere was higher than nonrhizosphere but in the late stage nonrhizosphere was higher than rhizosphere on the $NH_4-N$ content. 4. In the submerged soil, rhizosphere was higher than nonrhizosphere, on the concentration of glucose and pentose. 5. Changes of the number of nitrogen fixing organism in whole soil was not high. 6. Generally, rhizosphere was higher than nonrhizosphere on the soil enzyme activity such as phosphatase, ${\beta}$-glucosidase, and protease. 7. Acetylene-reducing activity was the highest in the tillering stage, and rhizosphere, Samgang (high-yielding variety) were higher than nonrhizosphere. Dongjin (general variety) respectively. 8. In the submerged soil applied barley straw, acetylene-reducing activity was slightly higher than rice straw in the initial stage.

  • PDF

Growth Stimulation of Alnus firma and Robinia pseudoacacia by Dual Inoculation with VA Mycorrhizal Fungi and Nitrogen-Fixing Bacteria and Their Synergistic Effect (VA 내생균근균(內生菌根菌)과 질소고정균(窒素固定菌)으로 이중접종(二重接種)한 사방오리나무와 아까시나무의 생장촉진(生長促進)과 접종(接種)의 상승효과(相乘效果))

  • Lee, Kyung Joon
    • Journal of Korean Society of Forest Science
    • /
    • v.77 no.2
    • /
    • pp.229-234
    • /
    • 1988
  • To evaluate potential of VA mycorrhizal fungi for promoting growth of nitrogen-fixing trees and efficiency of fungal inoculation in relation to soil fertility and dual inoculation with bacteria, Alnus firma was grown for six months in pots with steam-sterilized soil after inoculation with Glomus mosseae, and Robinia pseudoacacia was grown in the fumigated field after inoculation with native Glomus sp. and Gigaspora sp. In unfertilized Alnus plants, 27% increase in dry weight(or 18% in height) was observed by Glomus inoculation, while plants inoculated with both VA mycorrhiza and actinomycete(crushed nodule inoculum) showed synergistic effect of 83% dry weight increase over uninoculated plants. In fertilized Alnus plants, mycorrhizal inoculation alone or dual inoculation with actinomycete resulted in depression of height and dry weight of plants. In case of Robinia, dual inoculation stimulated height growth by 23% (or dry weight by 25%) over the control in unfertilized field, while 13% more height growth(or 21% more dry weight) was observed in fertilized field. It is concluded that VA mycorrhizae, especially Glomus mosseae, have a potential for growth enhancement in Alnus, that synergistic effect of dual inoculation(mycorrhiza + actinomycete) exists in both Alnus and Robinia, and that responses of these plants to VA mycorrhiza are more pronounced in unfertilized soil.

  • PDF