• Title/Summary/Keyword: Nitrogen efficiency

Search Result 1,659, Processing Time 0.033 seconds

Growth, Yield and Nutrient Uptake of Radish as Affected by Amount of Organic Fertilizer in a Volcanic Ash soil (화산회토에서 유기질비료 시용량이 무 생장과 수량 및 양분흡수에 미치는 영향)

  • Kim, Yu-Kyoung;Cho, Young-Yuen;Oh, Han-Jun;Kang, Ho-Jun;Yang, Sang-Ho;Moon, Bong-Chun;Jwa, Chang-Sook
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.4
    • /
    • pp.829-846
    • /
    • 2015
  • This study was conducted to determine the effects of organic fertilization rates on the nutrient accumulation and recovery in radish (Raphanus sativus L.) as well as growth and yield of radish in Jeju island. An understanding the relationships between organic fertilization rate, crop nutrient recovery and crop yield can assist in making organic fertilizer recommendation which balances crop value and environmental risk in organic cultivation. Nitrogen (T-N), phosphate ($P_2O_5$) and potassium ($K_2O$) were applied at 0, 115-35-40, 230-70-80 (standard application rate), 460-140-160, 230-200-100 (recommended application rate) and 158-53-35 kg/ha (customary application rate), respectively as the broadcast application of mixed organic fertilizer (N 4.5% - $P_2O_5$ 1.5% - $K_2O$ 1%) in combination with langbeinite ($K_2O$ 22%), 100% at sowing period. The organic fertilizer was made of organic materials like oil cakes. Total yield of radish, as fresh weight of roots, increased with increasing organic fertilizer doses to a maximum at rate of standard or soil-testing application. Nitrogen, phosphate and potassium accumulations of radish increased curvilinearly with increasing organic fertilization rate to a maximum at rate of N 460 - $P_2O_5$ 140 - $K_2O$ 160 kg/ha. However, nitrogen, phosphate and potassium use efficiency of applied organic fertilizer decreased curvilinearly or linearly with increasing organic fertilization rate. Application of organic fertilizer in combination with langbeinite (as a potassium source) had significant effect on the yield of radish. Organic fertilization on a basis of standard or soil-testing application rate is recommended for maximun radish yield in organic cultivation.

The Effect of Application of Cattle Slurry on Dry Matter Yield and Feed Values of Tall Fescue(Festuca arundinacea Schreb.) in Uncultivated Rice Paddy (유휴 논토양에서 가축분뇨의 시용이 Tall fescue의 잠재생산성에 미치는 영향)

  • Jo Ik-Hwan
    • Korean Journal of Organic Agriculture
    • /
    • v.14 no.1
    • /
    • pp.69-83
    • /
    • 2006
  • This experiment was conducted to investigate effects of application of diluted and undiluted cattle slurry with water on seasonal and annual dry matter yields and feed values of tall fescue in the uncultivated rice paddy and it was compared with chemical fertilizer. Annual dry matter yields for diluted (average 6.43 ton DM/ha) and undiluted (average 6.56 ton DM/ha) cattle slurry were significantly higher (p<0.05) than those of no fertilizer (3.82 ton DM/ha). This trend was much more conspicuous in treatments applied in spring. In chemical fertilizer treatments, fertilizers with P and K (6.12 ton DM/ha), and P, K and N (10.13 ton DM/ha) had significantly (p<0.05) higher dry matter yields compared with no fertilizer. However, annual dry matter yields for treatments of P and K mixture tended to be lower than those of cattle slurry applications. The efficiency of DM production for inorganic nitrogen in chemical fertilizers annually averaged 26.7kg DM/kg N. In terms of cutting frequencies, it was highest in 2nd growth followed by 1st and 3rd growth. On the other hand, efficiencies of annual DM production of nitrogen for diluted and undiluted cattle slurry were 18.3 and 17.4 kg DM/kg N, respectively, especially, highest in 2nd growth. While, efficiencies of DM production for cattle slurry versus for inorganic nitrogen were 68.5 (undiluted) and 65.2% (diluted), respectively. For annual crude protein contents of tall fescue, no fertilization (11.5%) was significantly higher than chemical fertilizer, but that was lower than cattle slurry ($12.4{\sim}12.6%$) diluted with water. on the contrary, no fertilizers had significantly lower NDF (64.1%) and ADF (37.2%) contents than those of any other treatments, but their RFV (87.0) was significantly higher (p<0.05) than other treatments. The application of cattle slurry and their dilution significantly increased yields of crude protein and total digestible nutrients compared with no and/or P and K fertilizers (p<0.05). This trend was more conspicuous in cattle slurry applied in the early spring.

  • PDF

The Effect of Single and Compound Fertilizerson Paddy Rice (수도에 대(對)한 단비(單肥)와 복비(複肥)의 효과)

  • Oh, Wang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.11 no.2
    • /
    • pp.81-87
    • /
    • 1979
  • In order to observe the lasting effect of NK-compound mineral fertilizer and organic compound fertilizer including Myweon organic liquid fertilizer, a pot experiment was conducted with rice (Oriza Sativa) variety: Nong Back. These fertilizers were applied as basal and the same amount of urea form of nitrogen was top dressed about a month after transplanting, July seventh, 1977. Results obtained are as follows; 1. The lasting effect of various fertilizers were laid in following decreasing order; Myweon liquid < Organic compound fertilizer (Myweon coop. made) > NK-compound fertilizer (Chosun coop. made) Single fertilizer. It was considered that organic matter served as microbial feed and lead a temporary fixation of available plant nutrients in the soil, and the reduced surface area of the compound fertilizers slowed down the availability of the fertilizers. 2. The fertilizer showing greater lasting effect produced more panicles per hill and less grains per panicle than the fertilizers showing less lasting effect, and brought low maturity, which resulted in low paddy yield the paddy producing efficiency of nitrogen absorbed by straw was also low in the former fertilizers. Such advanced effect of the former fertilizer was considered to be related with the variety of early maturity and unseasonable topdressing of fertilizer which made at the maximum tillering stage. 3. For the production of Japonica type paddy with heavy fertilization which may required to depress the early growth a little and promote the late growth, it might be necessary to develop slow releasing fertilizers such as single fertilizer formulated to a large grains or compound fertilizer containing organic matter. 4. If the nitrogen content of paddy, Nong Back, far excess 0.64 or 0.65% and reaches 0.68% or above, the yield of the variety seemed to be decreased remarkbly through the low maturity rate and thousand grain weight.

  • PDF

Algal Waterbloom on Rice Seedling-Bed and Nuisance Phytoplanktonic Green Algae in Rice Field (수도재배기간중(水稻栽培期間中) 묘대(苗垈)의 괴불원인조류(原因藻類) 및 본답(本畓)의 부유조류(浮遊藻類)에 관(關)한 연구(硏究))

  • Lee, Sang-Kyu;Kim, Seung-Hwan;Han, Ki-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.1
    • /
    • pp.70-75
    • /
    • 1986
  • The population and kinds of algae causing the waterbloom on the rice seedling bed and the damage of young rice plant by the nuisance green phytoplanktonic algae in rice field were studied to find out the efficiency of fertilizers and the effect of methods of fertilizers application in the rice field, laboratory, pot and green house. pot and green house. The results obtained were summarized as follows; 1. In the rice seedling bed, the kinds of algae causing waterblooms were identified mainly photosynthetic bluegreen algae as the Anabaena, Ulothrix and Oscillatoria spp. in reclaimed saline soil. Micromonospora, Oscillatoria, and Chlamydomonas spp. were habitated mainly in plain. Whereas, Spyrogyra, Oscillatoria and Navicula spp. were identified mainly in mauntainous area. 2. In the rice field, the nuisance phytoplanktonic green algae were identified mainly Scenedesmus, Chlamidospora, and Micromonospora spp. in Gimjae plain, in Namweon mountainous area and Gangjin costal plain, respectively. 3. The algal biomass has been havily habitated in which rice field were constituted with high pH value and high concentration of $NH^+_4-N$ and $NO^-_3-N$ in surface water and in soil with the optimum temperature for the algal growth ($22-30^{\circ}C$). 4. In the laboratory experiment, maximum algal biomass were obtained at levels of 80 ppm for the nitrogen and 20 ppm for the phosphorus. And were obtained of the levels of 40 ppm in the case of joint application of N and $P_2O_5$. 5. From the pot experiment, compare of the control plot, an addition of nitrogen alone or nitrogen+phosphorus enhanced algal biomass while the phosphorus alone did not. 6. Surface application of fertilizer was remarkably increased of algal biomass than did the whole layer or deep layer application.

  • PDF

Effect of Slurry Composting Bio-filtration (SCB) by Subsurface Drip Fertigation on Cucumber (Cucumis sativus L.) Yield and Soil Nitrogen Distribution in Greenhouse

  • Lim, Tae-Jun;Park, Jin-Myeon;Noh, Jae-Seung;Lee, Seong-Eun;Kim, Ki-In
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.4
    • /
    • pp.253-259
    • /
    • 2013
  • The use of subsurface drip fertigation using slurry composting bio-filtration (SCB) as nitrogen (N) fertilizer source can be beneficial to improve fertilizer management decision. The objective of this study was to evaluate effects of SCB liquid fertilizer by subsurface drip fertigation on cucumber (Cucumis sativus L.) yield and soil nitrogen (N) distribution under greenhouse condition. Cucumber in greenhouse was transplanted on April $4^{th}$ and Aug $31^{st}$ in 2012. N sources were SCB and urea. Four N treatments with 3 replications consisted of control (No N fertilizer), SCB 0.5N + Urea 0.5N (50:50 split application), SCB 1.0N, Urea 1.0N. 100% of N recommendation rate from soil testing was denoted as 1.0N. The subsurface drip line and a tensiometer were installed at 30 cm soil depth. An irrigation was automatically started when the tensiometer reading was -15 kPa. The growth of cucumber at 85 days after transplanting was 5% higher in all N treatment than control. Semi-forcing culture produced more fruit yield than retarding culture. Fruit yields were 62.2, 76.3, 76.4, and 75.1 Mg $ha^{-1}$ for control, SCB 1.0N, Urea 1.0N, and SCB 0.5N + Urea 0.5N, respectively. Although fruit yields were similar under SCB 1.0N, Urea 1.0N, and SCB 0.5N + Urea 0.5N, 176 kg K $ha^{-1}$ can be over applied if cucumber is grown twice a year under SCB 1.0N that may result in K accumulation in soil. N uptake was 172, 209, 213, 207 kg $ha^{-1}$ for control, SCB 1.0N, Urea 1.0N, and SCB 0.5N + Urea 0.5N, respectively. N use efficiency was the highest (37%) at SCB 0.5N + Urea 0.5N under semi-forcing culture. Nitrate-N concentration in soil for all N treatments except control in semi-forcing culture was the highest between 15 and 30 cm soil depth at the 85 days after transplanting and between 0 and 15 cm soil depth after cucumber harvest. These results suggested that SCB 0.5N + Urea 0.5N can be used as an alternative N management for cucumber production in greenhouse if K accumulation is concerned.

Crop Growth and Nutrient leaching from Soil with Application of Urea and Compost in Volcanic Ash Soil (화산회토에서 퇴비 및 요소시용에 따른 토양중 $NO_3$-N, 양이온의 용탈)

  • 강봉균;송창길
    • Korean Journal of Organic Agriculture
    • /
    • v.9 no.2
    • /
    • pp.101-115
    • /
    • 2001
  • Nitrogen applied as fertilizer for crop production is partly absorbed by plant , and the remaining nitrogen in soil might be leached out through complicated processes to the subsoil layer Especially, NO$_3$-N in leachate causes environmental pollution. The purpose of this study was focused on understanding of uptake of nutrients by plants, the behaviors of nutrients in soil and the possibility of leaching loss when nitrogen fertilizer and completely decomposed compost were applied. Lysimeters(Volume 0.15㎥, Diameter 62cm, Height 62.8cm) were installed for collecting leachate in the Jeju volcanic ash soils. Lysimeter study consisted of thirteen treatments : fallow, fallow with weeding, cropping without fertilizer and compost, three N fertilizer soil surface applications(16, 32, 64kg/10a), three N fertilizer and compost soil surface applications(16+800, 32+1600, 64+32kg/10a), two water dissolved N fertilizer applications(16, 32kg/10a), and low and high plant densities. N fertilizer was applied as urea. The growth of com(preceding crop) and potatoes(succeeding crop) and leaching loss were determined during the experimental period. The results obtained were summarized as follows ; With Increased N, pH of leachate tended to decrease and NO$_3$-N concentration of leachate increased. NO$_3$-N leaching loss was remarkably greater in soil from the bare plot without fertilization and the weed control than from plots with medium N rate and was least in the cropping plot without fertilization. NO$_3$-N concentration in leachates from the water dissolved N fertilizer application plots was 64% of that from the soil surface application plots. The concentration of Ca and K ions and the leaching loss of these ions were least from the cropping plot without fertilization and were greatest from bare plots(T1 and T2) without fertilization. The proportion of leaching and residual N in soil increased as N rate increased indicting that higher N rates increase the possibility of N leaching to subsoil layer The proportion of N leaching losses was lower at the low N rate and the high plant density. In future, fertilization prescription which can maximize fertilizer use efficiency and minimize the pollution of ground water will be needed for conserving the environments.

  • PDF

Removal of Dissolved Organic Matter by Ozone-biological Activated Carbon process (오존처리와 생물활성탄 공정에 의한 상수원수 중의 용존유기물 제거)

  • 이상훈;문순식;신종철;최광근;심상준;박대원;이진원
    • KSBB Journal
    • /
    • v.18 no.3
    • /
    • pp.211-216
    • /
    • 2003
  • The removal yield of dissolved organic matter in drinking water by biological activated carbon (BAC) process was investigated. The tested processes wer raw water-AC process (BAC1), raw water-ozonation-BAC process (BAC2), and raw water-ozonation-coagulation/sedimentation-BAC process (BAC3). The amounts of organic matter was measured as dissolved organic carbon (DOC), ulta-violet radiation at 254 nm wavelength ($UV_{254}$), total nitrogen (T-N), ammonia nitrogen (NH_3$-N), and total phosphate (T-P). As a results, 30.7% DOC was removed by BAC2 process, which showed higher removal efficiency than BAC1 or BAC3 processes. The removal yield of $UV_{254}$ in BAC1, BAC2, and BAC3 processes were observed as 45.3%, 44.6%, 58.4%, respectively. And the removal yield of ammonia nitrogen were 66%, 81%, 29% in each BAC processes. The optimal empty bed contact time (EBCT) of BAC processes was estimated as 10 minute. This study has shown that BAC process combined with ozone treatment was efficient for removing dissolved organic matter in water.

Effect on Survival and Developmental Competence of Vitrified Mouse Embryos Using Various Cryoprotectants and Cooling Speeds (생쥐 배아의 유리화 동결에 동결액의 조성과 냉각속도의 영향)

  • Park, Jae-Kyun;Go, Young-Eun;Eum, Jin-Hee;Won, Hyung-Jae;Lee, Woo-Sik;Yoon, Tae-Ki;Lee, Dong-Ryul
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.37 no.4
    • /
    • pp.307-319
    • /
    • 2010
  • Objective: Vitrification requires a high concentration of cyroprotectant (CPA) and an elevated cooling speed to avoid ice crystal formation. We have evaluated the effect of different combinations of cooling rate and CPA on embryonic integrity (developmental competence) in order to increase the efficiency of vitrification without impairing embryo viabilit. We hypothesized that the combination of CPA or the increase of cooling rates can reduce the concentration of toxic CPA for vitrification. As consequently, we performed experiments to evaluate the effect of various composition of CPA or slush nitrogen ($SN_2$) on the mouse embryonic development following vitrification using low CPA concentration. Methods: Vitrification of mouse embryos was performed with EM grid using liquid nitrogen ($LN_2$) or $SN_2$ and different composition of CPAs, ethylene glycol (EG) and dimethylsulfoxide (DMSO). After vitrification-warming process, their survival and blastocyst formation rates were examined. For analyzing long-term effect, these blastocysts were transferred into the uterus of foster mothers. Results: Survival and blastocyst formation rates of vitrified embryos were higher in EG+DMSO group than those in EG only. Furthermor, the group using $SN_2$ with a lower CPA concentration showed a higher survival of embryos and developmental rates than group using $LN_2$. Conclusion: The combination of EG and DMSO as CPAs may enhance the survival of mouse embryos and further embryonic development after vitrification. $SN_2$ can generate high survival and developmental rate of vitrified/warmed mouse embryos when a lower concentration of CPA was applied. Therefore, these systems may contribute in the improvement of cryopreservation for fertility preservation.

Effect of Dietary Protein and Energy on the Nitrogen and Energy Utilization in Growing Rats (단백질과 에너지 수준이 흰쥐의 질소와 에너지 이용에 미치는 영향)

  • Chang, Yu Kyung;Kwon, Soon Hyung;Han, In Kyu
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.12 no.3
    • /
    • pp.264-272
    • /
    • 1983
  • In order to investigate the effect of dietary protein and energy on growing female and male rats, Sprague-Dawley 90 female rats and 54 male rats of 3 weeks old weighing approximately 70-80g and 54-75g, respectively, were subjected feeding trials for 8 weeks and then subsequently to metabolic trials for 2 weeks. Three dietary energy levels(3,200, 3,600, 4,000 kcal/kg) were employed and each energy level contained three protein levels (15, 25, 35% of 3600 kcal ME/kg) and three rat levels (10, 20, 40% of 3,600 kcal ME/kg) by addition of an appropriate amount of carbohydrate and the following result were obtained. As the protein level was increasing, digestibilities of dry matter and carbohydrate tended to decrease whereas that of protein was slightly increasing. On the other hand, digestibility of fat was always very high regardless of the level of protein but that tended to be slightly improved as the level of energy or rat increased. The digestibilities of female and male rats tended to be same. The digestibilities of dry matter, crude protein, crude fat and carbohydrate were 83%, 90%, 96% and 93%, respectively, and they were neither affected by protein and energy levels nor observed differently depending upon the sex. Nitrogen retention of female and male rats were best for LPHE ration. In other words, both nitrogen retention was improved as the level of energy increased and the level of protein decreased. The gross energy intake was high at low protein level in female rats and at medium protein level in male rats. That tended to decrease as the level of energy increased in female rats whereas that was not affected by the level of energy in male rats. The metabolic energy efficiency was highest for LPHE ration in female rats and for LPME ration in male rats.

  • PDF

Effects of Fermented Mixed Organic Fertilizer Utilizing By-Products on Soil Properties and the Yield of Organic Lettuce (부산물 활용 발효 유기질비료 처리에 따른 유기 상추 토양 특성 및 수량에 미치는 영향)

  • An, Nan-Hee;Lee, Sang-min;Hwang, Hyun-Young;Park, Sang-Gu;Lee, Cho-Rong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.3
    • /
    • pp.41-48
    • /
    • 2021
  • This study aimed to develop an alternative organic fertilizer to castor oil cake-based fertilizers. To assess the nutrient effect of the developed fermented mixed organic fertilizers, the yield of lettuce and soil characteristics after growth were analyzed and compared to those of a trial using a mixed expeller cake fertilizer. Two fermented mixed organic fertilizers, FA and FB, each containing 5.0% nitrogen, 2.6% phosphate, and 1.4% potassium, were produced by mixing different ratios of rice bran, dried distillers grains, sesame oil meal, and fish meal. This study was conducted with six trials: untreated, mixed expeller cake fertilizer, and the fermented mixed organic fertilizers FA and FB. Based on the amount of nitrogen fertilization (70 kg ha-1) on the lettuce, the fermented mixed organic fertilizers FA and FB were applied at 100% and 150%, respectively, and the mixed oil cake was applied at 100%. As the amount of treatment increased, there was no significant difference except the number of leaves in FA treatment. The yields from the FA100 and FB100 treatments were 38.2 and 40.8 Mg ha-1, respectively, which was not significantly different from that of the mixed expeller cake fertilizer treatment at 38.3 Mg ha-1. In addition, the nitrogen uptake and utilization efficiency of the lettuce were not significantly different between mixed expeller cake fertilizer and fermented mixed organic fertilizer treatments. Analysis of the chemical properties of the soil after the trial showed that he mixed expeller cake fertilizer treatment showed the lowest pH. There were no significant differences in electrical conductivity, content of soil organic matter, available phosphate, and exchangeable cation among the fertilizer treatments. However, the bacterial and actinomyces density was higher in the soil from the fertilizer trials than in the non-fertilizer trials. These results indicated that the two tested fermented mixed organic fertilizers had nourishing effects and soil characteristics that were similar to those of the mixed expeller cake fertilizer. Thus, farmers can use these fermented mixed organic fertilizers as alternatives to castor oil cakes for the cultivation of organic lettuce.