• Title/Summary/Keyword: Nitrogen Usage

Search Result 74, Processing Time 0.028 seconds

The Effects of the Amount of Applied Fertilizer on the Mineral Nutrient Uptake and Oil Quality in Rapes (施肥量이 油菜 無機養分 吸收 및 油質에 미치는 影響)

  • Moon, Yong Sick;Chae Kyu Lim
    • The Korean Journal of Ecology
    • /
    • v.7 no.3
    • /
    • pp.170-176
    • /
    • 1983
  • The results obtained from the experiments conducted to investigate Cruciferae plants in rape dependent on the amount of applied fertilizer in aspects of mineral nutrient uptake and on the effects of the composition of oil quality are as follows: Absorption of mineral nutrients in the respective pars of the plant body was high in nitorgen in the order of leaf and stem

  • PDF

Effects of localised liquid fertilization of N, P, K and Ca on root development in Zoysia matrella, Cynodon dactylon and Stenotaphrum secundatum

  • Ow, Lai Fern;Yusof, Mohamed Lokman Mohd
    • Weed & Turfgrass Science
    • /
    • v.7 no.1
    • /
    • pp.76-86
    • /
    • 2018
  • Turfgrass species were evaluated for their rooting and foliar characteristics, and their interaction with the soil. The rooting system was divided into three compartments, one above another, such that the top and bottom compartments of the root system could be supplied with a nutrient deprived solution. Exposure of parts of the roots to nitrate deprivation caused a localised retardation of root initiation and extension, compared with zones receiving the full supply of nutrients. This resulted in considerable modification to root form, coupled with a significant depression in foliar growth. The extension of roots was the least affected by the deprivation of potassium. Phosphate and calcium deprivations gave rise to similar responses in root and foliar formation. Results from this study showed that external concentrations of nitrogen, phosphorus, potassium and calcium are required by the root system in varying amounts for optimal growth of roots. Turfgrass coverage and turf quality ratings further reinforced these findings. No significant difference was observed between the different grasses examined here. All three species responded similarly to the deprivation of the various nutrients. Results from this study confirmed that targeted fertilization programs are beneficial and can help reduce cost, chemical usage and prevent leachate and contamination.

Fuel Properties of Woody Pellets in Domestic Markets of Korea

  • Oh, Jae-Heun;Hwang, Jin-Sung;Cha, Du-Song
    • Journal of Forest and Environmental Science
    • /
    • v.30 no.4
    • /
    • pp.362-369
    • /
    • 2014
  • This study investigated physical properties and combustion gas characteristics for 8 types of wood pellets (4 domestic and 4 imported products) distributed in the domestic market. Results showed that most pellet types were first-grade pellets in the wood pellet quality standards in Korea with the exception of 3 pellet types from K company (second-grade in mechanical durability), G company (off-grade in nitrogen content) and P company (second-grade in ash percentage). Mixed pellets which contained more lignin and sap content were higher in mechanical durability (%) than that of white pellets. From the combustion gas analysis results, NOx emitted from all pellets combustion was at acceptable levels for national emission standard of the Clean Air Conservation Act except for pellets from G company. In addition, CO levels from all types of wood pellets were acceptable except for pellets from D company and domestic pellets were higher CO levels than imported pellets. These results indicate the higher CO levels in domestic pellets due to the usage of forest thinning materials including logging debris which usually had the high content of bark.

A Study on the Reaction Force Characteristics of the Gas Spring for the Automotive (자동차용 가스 스프링의 반력 특성에 관한 연구)

  • Lee, Choon Tae
    • Journal of Drive and Control
    • /
    • v.12 no.4
    • /
    • pp.35-40
    • /
    • 2015
  • A gas spring provides support force for lifting, positioning, lowering, and counterbalancing weights. It offers a wide range of reaction force with a flat force characteristic, simple mounting, compact size, speed controlled damping, and cushioned end motion. The most common usage is as a support on a horizontally hinged automotive tail gate. However, its versatility and ease of use has been applied in many other industrial applications ranging from office equipment to off-road vehicles. The cylinder of a gas spring is filled with compressed nitrogen gas, which is applied with equal pressure on both sides of the piston. The surface area of the rod side of the piston is smaller than the opposite side, producing a pushing force. The magnitude of the reaction force is determined by the cross-sectional area of the piston rod and the internal pressure inside the cylinder. The reaction force is influenced by many design parameters such as initial chamber volume, diameter ratio, etc. In this paper, we investigated the reaction force characteristics and carried out parameter sensitivity analysis for the design parameters of a gas spring.

Preparation of Alumino-silicate Membrane and Its Application to a Gas Separation

  • 김태환
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2002.04a
    • /
    • pp.23-46
    • /
    • 2002
  • The cryogenic, pressure swing adsorption and membrane methods have been used to separate air into nitrogen and oxygen. The air separation membrane is made of the polymers, of which manufacturing process is complicate and it causes a little high production cost. Polymer membrane has temperature limit in usage and low durability even at moderate temperature. Therefore, inorganic membranes have been studied for years. As formation of unit alumino-silicate membrane, unit cells of membrane were made with a few coating methods. In this study the dipping of substrate into sols, application of vacuum to the opposite side of substrate with coating and rotating of the substrate in the sols were found as good coating memthods to make a uniform coating and to control the thickness of membrane. The membrane coats were examined by SEM and XRD. The sample ESZl-1 was compared with those of samples that prepared by another method. The present developed coating methods could be applied to the various types of zeolite membrane formation, that is A- X-, Y- ZSM- and MCM-types of membranes. Also these membrane forming methods could be applied to formation of catalyst absorbed zeolite membrane, of which zeolite absorb the catalytic metals. The product obtained from these coating methods could be applied to the industrial gas and liquid phase catalytic reaction and separation processes.

  • PDF

A Study on Cold Start Emission Characteristics using the Syngas in a SI Engine (합성가스를 이용한 SI 엔진의 냉간시동 배기가스 배출특성에 관한 연구)

  • Song, Chun-Sub;Kim, Chang-Gi;Kang, Kern-Young;Cho, Yong-Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.66-72
    • /
    • 2008
  • Fuel reforming technology for the fuel cell vehicles could be adopted to internal combustion engine for the reduction of engine out emissions. Since syngas which is reformed from fossil fuel has hydrogen as a major component, it has abilities to enhance the combustion characteristics with wide flammability and high speed flame propagation. In this paper, syngas was feed to 2.0 liter gasoline engine during the cold start and early state of idle condition. Not only cold start HC emission but also $NO_x$ emission could be dramatically reduced due to the fact that syngas has no HC and has nitrogen up to 50% as components. Exhaust gas temperature was lower than that of gasoline feeding condition. Delayed ignition timing, however, resulted in increased exhaust gas temperature approximated to gasoline condition. It is supposed that the usage of syngas in the gasoline internal combustion engine is an effective solution to meet the future strict emission regulations by the reduction of cold start THC and $NO_x$ emissions.

Development of Multi-functional Mulch Papers and Evaluation of Their Performance(II) (다기능성 멀칭지의 개발 및 적용성 평가(제 2 보)-강도개선, 시제품 생산 및 농작물 재배에의 적용결과 -)

  • 이학래;이진희;이변우
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.32 no.1
    • /
    • pp.57-64
    • /
    • 2000
  • As a method to reduce the sue of agricultural chemicals mulching with thin plastic films has been commonly practised for many years. Although use of plastic films for mulching is very effective in preventing herb growth it is almost impossible to remove all of the plastic films from the agricultural lands and the remaining films eventually contaminate the soils. Therefore, it is very imperative to develop a mulching material that decomposes completely to prevent soil pollution problems and to enhance the competitive edge of domestic agriculture. In this paper the possibilities of using strength resins for improving strength properties of mulch papers made from old corrugated containers were examined. Also mulch papers have been produced and applied for practical farming in upland as well as paddy field. Result showed that the usage of 0.7% of wet strength additives was effective for wet and dry strength of mulch paper. Changes of various process parameters including freeness, cationic demand, one pass retention, nitrogen content, etc. that occurred during trial production of mulch paper have been examined and discussed . It was found that paper mulching was very effective for weed control both in upland field and paddy filed.

  • PDF

Process Analysis and Simulation for System of Air Liquefaction Separation Using LNG Cold Energy (LNG 냉열을 이용한 공기액화분리시스템의 시뮬레이션 및 공정 해석)

  • HAN, DANBEE;BAEK, YOUNGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.3
    • /
    • pp.276-281
    • /
    • 2019
  • The process of separating oxygen and nitrogen from the air is mainly performed by electric liquefaction, which consumes a lot of electricity, resulting in higher operating costs. On the other hand, when used for cold energy of LNG, electric power can be reduced compared to the electric Linde cycle. Currently, LNG cold energy is used in the cold refrigeration warehouse, separation of air-liquefaction, and LNG cold energy generation in Japan. In this study, the system using LNG cold energy and the Linde cycle process system were simulated by PRO/II simulators, respectively, to cool the elevated air temperature from the compressor to about $-183^{\circ}C$ in the air liquefaction separation process. The required amount of electricity was compared with the latent heat utilization fraction of LNG, the LNG supply pressure, and the LNG cold energy usage. At the air flow rate of $17,600m^3/h$, the power source unit of the Linde cycle system was $0.77kWh/m^3$, compared with $0.3kWh/m^3$.

Current status of Jeju special self-governing province's water infrastructure and direction for improvement (제주특별자치도 물인프라 현황 및 개선방향)

  • Kim, Jinkeun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.6
    • /
    • pp.497-505
    • /
    • 2021
  • This paper investigates the current status of Jeju special self-governing province (JSSGP)'s water infrastructure and recommends directions for improvement. JSSGP relies on groundwater for most of its water resources. Recently, water usage has been steadily increasing due to the increase of residents and tourists while the quality of groundwater has been steadily worsening. Deterioration in water quality of groundwater can be seen through the increase in concentration of nitrate nitrogen and microorganisms. To overcome such problems, water consumption must be reduced by water demand management in all fields including residential and agricultural water use. The quality of water resources should be preserved through the management of pollutants. For efficient management of water resources, great efforts should be made to reduce the leakage rates in household and agricultural water, which is currently at the highest level in the country. Furthermore, diversification of water intake sources other than groundwater is needed, especially for agricultural water supply. For water and sewerage facilities, compliance with drinking water quality standards and discharge water quality standards must be achieved through the optimization of operation management. This process requires recruiting professionals, improving existing workers' expertise, and improving facilities.

NOx Emission Characteristics with Operating Conditions of SNCR in SRF Usage Facilities (고형연료제품 사용시설에서의 SNCR의 운전조건에 따른 NOx 배출특성)

  • Seo, Je-Woo;Kim, Younghee
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.350-358
    • /
    • 2021
  • The results of this study shows that the combustor temperature ranged from 848.27 to 1,026.80 ℃, averaging about 976.61 ℃, and the NOx concentration increased as the temperature increased. The urea usage ranged from 291.00 to 693.00 kg d-1, averaging about 542.34 kg d-1, and the NOx concentration decreased as the urea usage increased. Residence time was about 3.38 to 9.17 s, averaging about 5.22 s, about 2.61 times larger than the 2 s of the design details. This is 1,086 kg h-1, averaging about 55.71%, compared to the 1,950 kg h-1 SRF input permission standard. The combustion chamber area is constant, but the residence time is shown to increase with the decrease of exhaust gas. The O2/CO ratio was 847.05 to 14,877.34, averaging about 3,111.30, and the NOx concentration slightly increased as the O2/CO ratio increased. As the combustor temperature and O2/CO ratio increased, the combustion reaction with nitrogen in the air increased and the NOx concentration slightly increased. As the urea usage and residence time increased, the NOx concentration decreased slightly with an increase in reactivity with NOx. The NOx concentration at the stack ranged from 7.88 to 34.02 ppm with an average of 19.92 ppm, and was discharged within the 60 ppm emission limit value. The NOhx emission factor was 1.058 to 1.795 kg ton-1, averaging about 1.450 kg ton-1. This value was about 24.87% of the maximum emission factor of 5.830 kg ton-1 of other solid fuels. Other synthetic resins and industrial wastes were 79.80% and 43.65% compared to 1.817 kg ton-1 and 3.322 kg ton-1, respectively. This value was similar to 1.400 kg ton-1 of RDF in the NIER notice (2005-9), 10.98% compared to the maximum SRF of 13.210 kg ton-1. Therefore, the NOx emission factor had a large deviation.