• Title/Summary/Keyword: Nitrogen Recycling

Search Result 266, Processing Time 0.025 seconds

A study on characteristic by isolation of nitrogen synthetic microorganism and ammonia nitrogen removal in artificial wastewater (질소 합성 균주의 분리에 의한 특성검토와 합성폐수중의 암모니아성질소 제거)

  • Kim, Su-Il;Lee, Ki-Hyung;Phae, Jae-Gun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.3
    • /
    • pp.117-125
    • /
    • 2002
  • This study experimented a possibility of advanced treatment through microorganism that converts $NH_3-N$ to organic nitrogen in wastewater contaminated by ammoniac nitrogen unlike conventional nitrogen removal process. After distributing three kinds of special bacteria that use $NH_3-N$ as a substrate, when those bacteria were cultured in no salt condition and salt condition (3% NaCl), M11 showed better growth in salt condition and M12 showed better growth in no salt condition. However M7l grew well in both no salt condition and salt condition. In the test of glucose effect, maximum growth and removal rate were observed in glucose concentration of 5g/L but in high concentration (1000mg/L as $NH_3-N$) of $NH_3-N$ growth and removal rate were low. Removal rate was the highest in 100mg/L $NH_3-N$ and the fact that concentration of $NO_2-N$ and $NO_3-N$ didn't increase assumed $NH_3-N$ was converted to organic nitrogen. Optimum concentration of $K_2HPO_4$ for phosphorous supply and buffer was 5g/L. Special bacteria distributed could use $NO_2-N$ and $NO_3-N$ as well as $NH_3-N$ as substrates. This study showed that when growth rate of bacteria was high removal rate also was high. It is possible to apply as a method to treat wastewater polluted by $NH_3-N$.

  • PDF

Development of a Vertical Multi-stage Ammonia Stripping Reactor for Recovering Ammonia from wastewater with High Nitrogen Concentrations(I) (고농도 질소폐수로부터 암모니아 회수를 위한 다단수직형 암모니아스트리핑조 개발(I))

  • Lee, Jae Myung;Choi, Hong-bok
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.2
    • /
    • pp.41-48
    • /
    • 2017
  • A vertical multi-stage ammonia stripping reactor using E-PFR, which has been proved to be superior in anaerobic and aerobic treatment, was developed and a lab scale experiment was conducted. According to the change of stage number condition, the removal rate of the ammonia nitrogen in the reactor with 0-stage was about 52.5% after 8 hours (pH 10, temperature $35^{\circ}C$, and the air/liquid ratio $3min^{-1}$) However, in the reactor with 5-stage, the removal efficiency was about 62.6%. According to the change of pH condition, the removal rate of ammonia nitrogen was about 42.6% at pH 9 after 8 hours, and was about 74.4% at pH 11 (5-stage reactor, temperature $35^{\circ}C$, and the air/liquid ratio $3min^{-1}$). According to the change of temperature condition, the removal rate of the ammonia nitrogen was about 51% at $25^{\circ}C$ after 8 hours (5-stage reactor, pH 10, and the air/liquid ratio $3min^{-1}$), and was about 87.2% at $45^{\circ}C$. According to the change of air injection volume condition, the removal rate of the ammonia nitrogen was about 45.8% at $2min^{-1}$ after 8 hours (5-stage reactor, pH 10, and at $35^{\circ}C$). and was about 75% at $4min^{-1}$. Based on these results, we will follow up the applicability of the actual plant in the future through continuous operation evaluation.

A Study on Recycling of Food Garbage - For Compost - (음식물찌꺼기의 재활용에 관한 연구 - 퇴비화로서 -)

  • Kim, Nam-Cheon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.2 no.1
    • /
    • pp.51-64
    • /
    • 1994
  • To compost the food garbage with the dry bean curd and sawdust as the bulking agents, the method of high-speed fermentation by the characteristic microorganisms group was applied. The results of experiments are summarized as follows ; 1. Korean food garbage, which is high in water content, is difficult to compost only by microorganism fermentation without the addition of bulking agents such as dry bean curd cake and sawdust. 2. Weight reduction rates are ranging from 35.6% to 64.5% and varying with the composition of food garbage. The less weight reduction rate is, the longer continuous-fermentation is. And the color of compost is changing sequentially as yellow -> brown -> black. 3. Comparing with the controlled microorganism group, the weight reduction rate and $H_2CO_3$ production rate in the characteristic microorganism group fermentation reactors are higher. And the fermentation rate is satisfactory when the characteristic microorganism group is added. 4. The value of fermented composting as fertilizer diminishes, and the contents of Total Nitrogen, $P_2O_5$, $K_2O$ increase on the condition that the fermentation continues. However, the organic contents and C/N ratio diminish as the fermentation continues. 5. The high-speed fermentation technology demonstractes the possibility of recycling as well as the reduction of composting time provided that it is applied as a pretreatment process for composting.

  • PDF

Production of Organic Acids from Food By-Products - Mass Production of Organic Acids by Continuous Flow Ceil Recycling Fermentation - (식품부산물로부터 유기산의 대량생산공정에 관한 연구 - 세포재순환식 연속발효를 이용한 유기산의 대량 생산 -)

  • Ju Yun-Sang;Jin Sun-Ja;Hwang Pil-Gi;Choi Chul-Ho;Lee Eui-Sang
    • KSBB Journal
    • /
    • v.19 no.6 s.89
    • /
    • pp.484-488
    • /
    • 2004
  • Fermentation studies were conducted in batch and continuous flow cell-recycle reactors with food by-products as substrates. The genus Propionibacterium acidipropionici ATCC 4965 was utilized in the production of organic acids. Good performance was achieved in the batch fermentation using hydrol as a carbon source and corn steep liquor (CSL) as nitrogen and vitamin sources. Product yields and productivity based on maximum values were 0.80 g total acids/g glucose and 0.26 g total acids/L/h, respectively, when $3\%$, (w/v) of hydrol and $2.5\%$, (w/v) of CSL were utilized. Continuous fermentation with cell-recycling system using the optimum amounts of substrates resulted in dramatic increase in cell concentration (X) and maximum productivity (P). Compared to the batch fermentation, X and P were increased by as much as 21 and 13 times, respectively, at the dilution ratio of $0.2\;hr^{-1}$, indicating that cell recycling fermentation of food by-products provides valuable means for the mass production of organic acids as well as utilizing cell mass as good nutrient resources.

Determination of Residual Pesticides in Recycle Product of Waste Plastic Pyrolysis (폐비닐 열분해 재활용품 중의 잔류농약 분석)

  • Shin Hea Soon;Shim Sung Hoon
    • Environmental Analysis Health and Toxicology
    • /
    • v.19 no.3
    • /
    • pp.315-320
    • /
    • 2004
  • Environmental waste treatment technology is transforming from incineration system to pyrolysis gasification system. And there it is necessary for our country to adapt gasification system urgently to prevent the land pollution and lack of landfill area. The objective of this study was to determine the pesticides residues of derived product of pyrolysis gasification system for recycling of waste plastic by gas chromatograph-mass selective detector and nitrogen phosphorus detector. The residual pesticides were not detected in derived product of waste recyling. But some pesticide was detected on raw level (0.02 ~ 0.05 ppm) in waste plastic sample.

Changes in the Chemical Properties of Maillard Reaction Products as Affected by Ozonolysis (Maillard 반응생성물의 Ozonolysis에 따른 화학적 특성 변화)

  • 권중호;이기동
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.6
    • /
    • pp.1122-1127
    • /
    • 1997
  • Melanoidins, which were higher polymers with intense brown color, were investigated on their decolorization and degradation by ozonolysis. Amino acids linked up with melanoidins were readily separated by depolymerization of melanoidins with ozonolysis. The IR spectra of ozone-untreated MRPs showed a higher peak at $1665cm^{-1}$ (C=N) and $1600cm^{-1}$ (C=C) than the corresponding peaks of ozone-treated MRPs. Ozone-treated melanoidins with molecular weight of above 900 showed the highest nitrogen composition of all melanoidins tested. Ozone-treated melanoidins with molecular weight of 900 to 1000 were separated into five peaks on recycling preparative HPLC chromatogram. Major functional groups in ozone-treated melanoidins with molecular weight of 900 to 1, 000 were -CH$_2$-CO-, -CH$_2$-O- and CH$_2$-.

  • PDF

Improvement of Cellulolytic Activity of Pleurotus florida through Radiation Mutagenesis

  • Sathesh-Prabu, Chandran;Lee, Young-Keun
    • Journal of Radiation Industry
    • /
    • v.6 no.2
    • /
    • pp.181-188
    • /
    • 2012
  • A mushroom mutant with increased cellulolytic activity was developed through radiation mutagenesis. The homogenized hypha suspension of Pleurotus florida was exposed to gamma radiation ($^{60}Co$, AECL) at the dose of $LD_{99}$ (0.51 kGy, $D_{10}$; 0.26 kGy). Among 16 mutants, Pf CM4 showed 17.24% more cellulolytic activity than the wild type (p<0.05). It was observed that Pf CM4 can utilize all kinds of carbon sources tested for their mycelia growth. Starch, xylan, and glucose favourably supported the radial mycelia extension. Yeast extract and $NH_4NO_3$ have been recorded as the best organic and inorganic nitrogen sources, respectively. Pf CM4 was found to grow significantly faster, even at high temperature ($30^{\circ}C$), than wild type (p<0.05), and the optimal pH was 5.5~6.5. This study reveals that the mutant Pf CM4 could be employed for the effective recycling of cellulosic wastes, in addition to mushroom farming.

Feasibility Study of Applying EMMC Process to Recirculation Water Treatment System in High Density Seawater Aquaculture Farm through Laboratory Scale Reactor Operation (실험실규모 반응조 운전을 통한 고밀도 해산어 양식장 순환수 처리공정으로서 EMMC공정의 적용 가능성 연구)

  • Jeong Byung Gon;Kim Byung Hyo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.3
    • /
    • pp.116-121
    • /
    • 2004
  • Treatability tests were conducted to study the feasibility of EMMC process as a recycling-water treatment system in high density seawater aquaculture farm. To study the effect of organic and ammonia nitrogen loading rate on system performance, hydraulic retention time was reduced gradually from 12hr to 10min. The conclusions are can be summarized as follows. When the system HRT was reduced from 12hr to 2hr gradually, there was little noticeable change(reduction) in ammonia nitrogen removal efficiencies. However, removal efficiencies were decreased dramatically when the system was operated under the HRT of less than 2hr. In case of organics(COD), there was no dramatic change in removal efficiencies depending on HRT reduction. COD removal efficiencies were maintained successfully higher than 9% when the system was operated at tile HRT of 10 min. System performances depending on media packing ratio in the reactors were also evaluated. There were little differences in each reactor performances depending on media packing ratio in reactor when the reactors were operated under the HRT of longer than 1hr. However, differences in reactor performances were considerably evident when the reactors were operated under the HRT of shorter than 1hr. When comparing reactor performance among 25%, 50%,7 5% packed reactor, it can be judged that media packing ratio more than 50% plays no significant role in increasing reactor performance. For this reason, packing the media less than 50% is more reasonable way in view of economic. Such a tendency shown in COD removal efficiencies well agreed with the variation of ammonia-nitrogen removal efficiencies according to the media packing ratio in reactors at each HRT. Difference in effluent ammonia-nitrogen concentration between 50% media packing reactor and 75% media packing reactor was negligible. When comparing with the results of 25% packing reactor, difference was not so great.

  • PDF

Assessment of Regional Nitrogen Loading of Animal Manure by Manure Units in Cheorwon-gun (분뇨단위 설정에 의한 철원군 지역의 가축분뇨 질소부하 평가)

  • Ryoo, Jong-Won
    • Journal of Animal Environmental Science
    • /
    • v.18 no.1
    • /
    • pp.45-56
    • /
    • 2012
  • This study was conducted to give basic information of the animal manure management by manure units determination for recycling farming in Cheorwon-gun. Manure units (MU) are used in the permitting, registration, and the environmental process because they allow equal standards for all animals based on manure nutrient production. An MU is calculated by multiplying the number of animals by manure unit factor for the specific type of animal. The manure unit factor for MU determination was determined by dividing amounts of manure N produced 80 kg N/year. Conversion to manure units is a procedure used to determine nutrient pollution equivalents among the different animal types. In this study, the manure unit factor based on nitrogen in Hanwoo, dairy cow, pig were 0.36, 0.8 0.105, respectively. The analysis of manure unit per ha shows that the N loading by MU is quite different by region. The nitrogen loading of manure unit (MU) per ha of cultivated land was the highest in the Galmal-eup on province with 2.4 MU/ha, which is higher than the appropriate level. The Seo-myeon province came next with 1.92 MU/ha. To be utilized as a valid program to build the recycling farming system, diverse measures shall be mapped out to properly determine manure units, evaluate N-loading and to properly manage their nutrient balance of each region.

Treatment Level of a Pond System for Ecological Treatment and Recycling of Animal Excreta (생태적 축산폐수 처리 및 재활용 연못시스템의 폐수처리수준)

  • Yang, Hong-Mo;Rhee, Chong-Ouk
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.1
    • /
    • pp.70-75
    • /
    • 1998
  • A model of pond system is developed for treatment and recycling of excreta from twenty-five adult dairy cattle. It is composed of wastewater treatment ponds and small fish ponds. Those are three facultative ponds in series; primary-secondary-tertiary pond and these are designed to rear carps without feeding. A pit is constructed at the bottom of primary pond for efficient sludge sedimentation and effective methane fermentation. It is contrived to block into it the penetration of oxygen dissolved in the upper layer of pond water. The excreta from the cattle housed in stalls are diluted by water used for clearing them. The washed excreta flow into the pit. The average yearly $BOD_5$ concentration of influent is 398.7mg/l. That of the effluent from primary, secondary and tertiary pond of the system is 49.18, 27.9, and 19.8.mg/l respectively. Approximate 88, 93, and 95 % of BOD5 are removed in each pond. The mean yearly SS concentration of influent is 360.5 mg/l That of the effluent from each pond is 53.4, 45.7, and32.7mg/l respectively. Approximate 86, 88, and 91% of SS are removed in each pond. The $BOD_5$ concentration of secondary and tertiary pond can satisfy 30mg/l secondary treatment standard. The SS concentration of effluent from tertiary pond, however, is slightly greater than the standard, which results from activities of carps growing in the pond. The average yearly total nitrogen concentration of influent is 206.8mg/l and that of the effluent from each pond is 48.6, 30.8, and 21.0mg/l respectively. Approximate 74, 88, and 90% of total nitrogen are removed in each pond. The mean yearly total phosphorous concentration of influent is 20.7mg/l and that of the effluent from each pond is 5.3, 3.2, and 2.1mg/l respectively. Approximate 97, 98, and 99% of total phosphorous are removed in each pond. The high removal of nitrogen and phosphorous results from active growth of algae in the upper layer of pond water. Important pond design parameters for southern part of Korea -- areal loading of BOD5, liquid depth, hydraulic detention time, free board, and pond arrangement -- are taken up.

  • PDF