• Title/Summary/Keyword: Nitrogen Loading Rate

Search Result 166, Processing Time 0.024 seconds

Investigation of Microbial Communities in the Anammox Reactor Seeded with Sewage Sludge and Anaerobic Granule (하수 슬러지와 혐기성 입상슬러지를 식종한 혐기성 암모니아 산화 반응기의 미생물 탐색)

  • Park, Kyung-Soon;Bae, Hyokwan;Chung, Yun-Chul;Park, Yong Keun;Jung, Jin-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.3
    • /
    • pp.397-402
    • /
    • 2007
  • Anammox reactor seeded with sewage sludge from RBC reactor and anaerobic granule from full-scale UASB reactor treating distillery wastewater was operated. Mixed granule and suspended sludge in the ammonium oxidizing process were taken and analyzed to investigate microbial community structure by molecular methods such as gene cloning and phylogenetic tree analysis after 250 days of continuous cultivation. The average nitrogen removal rate showed $0.9kg\;N/m^3-day$ after 250 days of continuous operation, then the maximum nitrogen removal rate showd $1.9kg\;N/m^3-day$ when $2.1kg\;N/m^3-day$ of nitrogen loading rate was applied. As results of gene cloning and phylogenetic tree analysis, Three kinds of phylum were found to be Proteobacteria, Acidobacteria and Planctomycetes (anammox bacteria) in mixed granule. Five kinds of phylum were found to be Proteobacteria, Chlorobi, Planctomycetes, Nitrospirae and Verrucomicrobia in suspended sludge. We found planctomycete KSU-1 and putative new anammox bacteria in the reactor. Microbial structure represented different consortia depending on the types of sludge in the anammox reactor.

Biological Nitrogen and Phosphorus Removal Characteristics on Organic Material and Nitrate Loadings in SBR Process (연속회분식반응조에서 유기물 부하와 질산염농도에 따른 생물학적 질소 및 인 제거 특성)

  • Kim, I-Tae;Lee, Hee-Ja;Kim, Kwang-Soo;Bae, Woo-keun
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.571-576
    • /
    • 2004
  • Since anaerobic/anoxic/oxic process, which is a typical mainstream biological nitrogen and phosphorus removal process, utilizes influent organic matter as an external carbon source for phosphorus release in anaerobic or anoxic stage, influent COD/T-P ratio gives a strong influence on performance of phosphorus removal process. In this study, a bench scale experiment was carried out for SBR process to investigate nitrogen and phosphorus removal at various influent COD/T-P ratio and nitrate loadings of 23~73 and 1.6~14.3g $NO_3{^-}-N/kg$ MLSS, respectively. The phosphorus release and excess uptake in anoxic condition were very active at influent COD/T-P ratios of 44 and 73. However, its release and uptake was not obviously observed at COD/T-P ratio of 23. Consequently, phosphorus removal efficiency was decreased. In addition, the phosphorus release and uptake rate in anoxic condition increased as the nitrate loading decreased. Specific denitrification rate had significantly high correlation with organic materials and nitrate loadings of the anoxic phase too. The rate of phosphorus release and uptake in the anoxic condition were $0.08{\sim}0.94kg\;S-P/kg\;MLSS{\cdot}d$ and $0.012{\sim}0.1kg\;S-P/kg\;MLSS{\cdot}d$, respectively.

Effect of HRT and Internal Recycle Ratio on Removal of Organic and Nitrogen in Swine Wastewater by Anoxic-Oxic Process Combined with Membrane (분리막이 결합된 무산소·호기 공정을 이용한 축산폐수처리에서 수리학적체류시간 및 내부반송율이 유기물 및 질소제거에 미치는 영향)

  • Whang, gye dae;Lee, bong hee;Lee, hyun duk
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.603-609
    • /
    • 2004
  • The objective of this study was to determine the optimal operation conditions in an anoxic oxic process to eliminate both organic and nitrogen matters in swine wastewater. For the purpose of this, the removal efficiency was evaluated with various HRTs and internal recycling ratio. During the whole 580 days of experiment, HRTs had been gradually decreased in an order of 20, 14, 12 and l0days, and the internal recycle ratio was kept at 20Q. So as to determine the effect of the internal recycle ratio on the nitrogen removal, the internal recycle ratio had been gradually increased from 20Q to 50Q while HRT was maintained at 12days. As a result, it was shown that the removal efficiency of organic matter was above 95% regardless of changing of HRTs. The average influent concentration of TCODcr and SCODcr were 24,854 mg/L and 18,920 mg/L, respectively. Average removal efficiency of TKN was shown to be nearly 98% when HRT was kept at 12days; however, the $NH_4{^+}-N$ concentration of effluent was shown to be increased when the loading rate of $NH_4{^+}-N$ was increased to $0.602 kgNH_4{^+}-N/m^3$-day by means of decreasing HRT to 10days. It was concluded that nitrogen loading rates should be more considered rather than organic loading rates in case of determining an optimal HRT. When gradually increasing the internal recycle ratio from 20Q to 50Q, the removal efficiency of organic matters and TKN were 96% and 98%, respectively so that no significant changes in removal efficiency was detected. However, when the internal recycle ratio was kept at 50Q, it was revealed that the $NO_3-N$ concentration of effluent seemed to drop and the average $NO_3-N$ concentration of effluent was around 52 mg/L.

Nitrogen removal characteristics of pigment wastewater using PAC-A/O process (PAC-A/O 공정을 이용한 안료폐수의 질소 제거 특성)

  • Jeong, Jongsik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.1
    • /
    • pp.19-25
    • /
    • 2018
  • The objectives of this study were to evaluate the removal characteristics of total nitrogen, the influence factor of denitrification and the optimum operating condition in the pigment wastewater treatment using PAC-A/O process. The operating conditions of PAC-A/O process were mean BOD volumetric loading $0.86kgBOD/m^3/day$, mean F/M ratio 0.072~0.13 kgBOD/kgMLVSS/day and mean C/N ratio 3.47, respectively. The conditions of anoxic process in the field plant test were mean pH 8.3~8.7 and mean temperature $34.1{\sim}44.0^{\circ}C$. The ORP bending point knee was eventually appeared in the ORP -107 mV and $NO_3{^-}-N$ removal efficiency was increased according to the ORP decrease. In the ORP -107 mV below condition, the removal efficiency of T-N and $NO_3{^-}-N$ was 92.3~95.0% and 98.5~99.7%. Denitrification rate was calculated to be 1.581~1.791 mg $NO_3{^-}-N/gMLSS/hr$. The experimental results showed that the ORP control in the PAC-A/O process could be an effective method for treatment of pigment wastewater.

The Characteristics of SBR Treatment with Different Types of Piggery Wastewater (축산폐수성상에 따른 SBR 처리특성)

  • Jun, Byong-Hee;Poo, Kyung-Min;Kim, Yang-Hoon;Im, Jeong-Hoon;Kim, Chang-Won
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.4
    • /
    • pp.435-440
    • /
    • 2002
  • A pilot scale SBR (effective volume, $20m^3$) for the treatment of piggery wastewater treatment was performed with three different kinds of wastewater; fermenter effluent, scraper type and slurry type. The react phase in SBR was performed by sub-cycle operation consisting of repeated short cycle of anoxic-aerobic step. The fermenter effluent was characterized by the rapid nitrification and $NO_X-N$ accumulation due to depletion of organic matter in wastewater. The scraper type wastewater showed appropriate nitrogen removal efficiency, however, a poor response capacity for high loading rate often resulted in increased nitrogen concentration in effluent. Moreover, severe P release was the most serious problem in scraper type wastewater. SBR treated slurry type wastewater with high nitrogen removal efficiency to satisfy effluent quality requirement. It was thought that high concentration of organic matter in slurry made it possible to uptake P during SBR operation, where P concentration of 140mgP/l was decreased to 8mgP/l. As results, SBR was suitable to treat slurry type wastewater which has been discharged to the ocean till now.

Nitrogen Removal Characteristics of Swine Wastewater when treating by MLE Process (MLE 공정을 이용한 양돈폐수의 질소 제거 특성)

  • Park, Seung Kyun;Park, Hyun Su;Lee, Ki Gong;Chung, Yoon Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.2
    • /
    • pp.147-156
    • /
    • 2000
  • In this study, the optimal operation parameters of MLE(Modified Ludzack-Ettinger) process treating the liquid supernatant separated from the slurry excreta of swine feedlot was studied as a promising biological treatment process. The nitrogen removal characteristics with different volume ratio between nitrification and denitrification reactor and the operational effect with different nitrogen loading rate, and different C/N($COD_{Cr}/TKN$) ratio were investigated. Based on the laboratory results, pilot MLE plant was operated to examine the effect of ambient temperature for five months including winter. The denitrification reactor which is 20% of total volume was proposed as the most optimal volume fraction for nitrification and denitrification. The optimum ratios of F/M and $F_N/M$ were increased with increase of the C/N ratio. However, optimum F/M ratio was changed more rapidly than $F_N/M$ ratio with increase of the C/N ratio. Therefore, MLE process is desirable to be controlled by F/M ratio in the range of high C/N ratio and by $F_N/M$ ratio in the range of low C/N ratio. Pilot MLE plant showed the higher removal efficiencies of COD and TKN in winter than in summer and was operated most stably at the temperature of $20{\sim}25^{\circ}C$ for mixed liqour.

  • PDF

Recycling Water Treatment of Aquaculture by Using Trickling Filter Process (살수여상공법을 이용한 양어장 순환수처리)

  • KIM Jeong-Sook;LEE Byung-Hun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.2
    • /
    • pp.230-237
    • /
    • 1996
  • The objective of the present study is to evaluate organic removal efficiencies, nitrogen removal efficiencies, kinetic constant, sludge production rates, oxygen requirements, and optimum treatment renditions for recycling water treatment of aquaculture by using a trickling filter process. When the loading rates were $0.500\~0.082kg\;COD/m^3/day$ and $0.271\~0.044kg\;NH_4^+-N/m^3/day$, SCOD and ammonia removal efficiencies were $74.5\~84.0\%$ and $43.7\~61.8\%$, respectively. The maximum removal rate of ammonia was 119.5 mg/L/day. Observed cell yield coefficient in the trickling filter reactor was 0.572 kg VSS/kg $BOD_{rem}$. When the hydraulic loading rate was $6.712\~40.341m^3/m^2/day$, oxygen uptake rate was $1.33\~7.22\;mg\;O_2/L/hr$.

  • PDF

The study on Fixed Bio-reactor Characteristics Using Porous Media (다공성 여재를 이용한 고정생물막 반응기 특성에 관한 연구)

  • 이영신;김동민;정상철;백명석
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.1
    • /
    • pp.99-106
    • /
    • 1996
  • The purpose of this study is to observe a specific removal efficiency of synthethetic wastewater which is managed by upflow submerged type at porous media which was sinteringed on a comparative low temperature 600$\circ$C, was annexed slag and humus soil with main material kaolinite. Observing removal efficiency quality of each media, a mixed media of kaolinite and humus soil by gravity percent 60, 40% respectively showed the most excellent removal utility, and applied predictive models for suspended culture kinetics without consideration diffusion limitation, and when analyzed kinetic which had been processed by this study the removal efficiency accompanied by carbon, nitrogen, phosphorous volumetric loading rate variation standed for a comparative large change rate 61~71%, it means the selection of the most proper load factor had a great effect on the highly removal efficiency, yield coefficient(Y) and specific microbial attach equation showed 1.53 mgVSS/mgCOD, $m_p=10039.4\times ((S_0)/(6.75+S_0))$ repectively.

  • PDF

A Study on the Nitrogen Control in the Wastewater by Upflow Anaerobic Sludge Blanket. (혐기성 슬러지에 의한 폐수의 질소 제거에 관한 연구)

  • 은종극
    • Journal of environmental and Sanitary engineering
    • /
    • v.12 no.2
    • /
    • pp.75-81
    • /
    • 1997
  • The study was investigated with denitrification of wastewater containing nitrate using upflow anaerobic sludge blanket process. Contents of this study were the determination of nitrate removal efficiency by various hydrogen donor addition, relationship between HRT, nitrate loading rate and growth constant of microorganism in case or various hydrogen donor addition etc. Results from this study were summurized as follows. In case of adding methanol, ethanol, sodium acetate as hydrogen donor, treatability of wastewater contained 200mg/l as nitrate was about 91%. But in addition of ethanol, sodium acetate in wastewater contained 40mg/l as nitrate, nitrate removal efficiency was 80%. While the treatment of nitrate showed the yield coefficient of microorganisms(Y) as 234.8, 234.35, and 247.68 g/VSS/g nitrate, respectively, showed specific growth rate(K) as 0.885, 0.934 and 0.917 respectively.

  • PDF

Removal Characteristics and Mass Balance Analysis of Mixed VOCs in Trickle Bed Air Biofilter Using Backwashing Operation (역세척공정을 이용한 Trickle Bed Air Biofilter의 혼합VOCs 분해특성 및 물질수지 고찰)

  • Kim, Dae-Keun;Sorial, George A.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.6
    • /
    • pp.503-511
    • /
    • 2009
  • VOC mixture was fed to a trickle bed air biofilter (TBAB) with step-change in influent mixture concentrations from 50 ppmv to 1,000 ppmv, corresponding to loadings of $5.7\;g/m^3/hr$ to $114.1\;g/m^3/hr$. VOC mixture was an equimolar ratio of two aromatic VOCs, i.e., toluene and styrene, and two oxygenated VOCs, i.e., methyl ethyl ketone (MEK) and methyl isobutyl ketone (MIBK). The TBAB system employed backwashing as biomass control. The experimental results showed that a critical loading rate for VOC mixture removal was determined to be about $60\;g/m^3/hr$, and critical loading rates for individual VOCs in the mixture were different. Specifically, toluene content in the mixture played a major role in the biofilter overall performance. As VOC mixture was fed beyond the critical loading rate, reacclimation of the biofilter to reach the 99% removal efficiency following backwashing was delayed, which was a critical factor in the biofilter performance. In the mass balance analysis, 63.8% of the carbon equivalent in VOCs removal was used for $CO_2$ production during the experimental runs. The 82.6% nitrogen utilized in the biofilter was contributed to microbial cell synthesis. The obtained results were compared against consistently high efficient performance of TBAB for VOC mixture by employing backwashing as biomass control.