• 제목/요약/키워드: Nitrogen Loading Rate

검색결과 166건 처리시간 0.028초

가축분뇨 고온 세정산발효액 처리를 위한 고부하 조건에서의 UASB 운전특성 (Operation Characteristics of an UASB at High Organic Loading Condition for Thermal Elutriated Acids of Piggery Wastewater Treatment)

  • 권구호;정용준;민경석
    • 한국물환경학회지
    • /
    • 제28권6호
    • /
    • pp.781-785
    • /
    • 2012
  • This study was carried out to treat the thermal elutriated acids of piggery wastewater using UASB process. The UASB reactor was operated at an organic loading rate (OLR) of $7.4\;kgCOD/m^3-day$ (6.5 ~ 9.0). During the start-up period, the low COD removal efficiency (20%) was caused by shock loading and instability in the reactor. It was mainly due to the high concentration amounts of ammonia nitrogen, which caused inhibitory and toxic effects to toward the anaerobic bacteria. In steady state, the UASB reactor showed a SCOD removal efficiency of 71% and a VS removal efficiency of 39%. The gas production and methane content were 1.3 L/day $(0.21\;m^3\;CH^4/kg$ COD removed) and 77%, respectively.

상향류식 혐기성반응조와 산발효조의 병합처리시 유기물질과 질소거동에 관한 연구 (A Study on the Behaviour of Organics and Nitrogen Using Upflow Anaerobic Reactor When Acid Fermenter is Added)

  • 오대민;이영신
    • 한국환경과학회지
    • /
    • 제18권3호
    • /
    • pp.325-331
    • /
    • 2009
  • This study was aimed to behaviour of organics and nitrogen on the upflow anaerobic reactor when a acid fermenter is added. Up flow anaerobic reactor (UAR) reaction will result which operates, COD removal efficiencies of reactor with nitrate loading rate 0.11, 0.66g/L/d were over 77%, but one with 1.0g/L/d was 73.5%. Especially, on NLR 0.11g/L/d, COD removal was 77% and nitrate removal efficiency was 93% simultaneously. The other side upflow anaerobic reactor and acid fermenter (UAR+AF) reaction will result witch operates, COD removal efficiencies of reactor with nitrate loading rate 0.11, 0.66g/L/d were over 85%, but one with 1.0g/L/d was 80%. Especially, on NLR 0.11g/L/d, COD removal was 85% and nitrate removal efficiency was 98% simultaneously. Also, without in reaction condition increase of influent nitrate concentration resulted in the linear decrease of nitrate removal efficiency and nitrate removal efficiency at influent nitrate-nitrogen 800mg/L was 50%. Alkalinity was increased theoretically by denitrification at low nitrate-N concentration, however, it was not increased theoretically at high nitrate-No 40% nitrate-N of UAR was denitrified until 70% height of reactor and 90% nitrate-N of UAR+AF was denitrified until 30% height of reactor Upflow anaerobic reactor was to occur accumulate acid, which TVA/Alkalinity is 0.3$\sim$0.47. Increase of NLR resulted increase of effluent alkalinity and TVA production

Membrane-Attached Biofilm Reactor(MABR)에서의 독립영양 미생물을 이용한 질소 제거 (Nitrogen Removal using Autotrophic Microorganism in Membrane-Attached Biofilm Reactor (MABR))

  • 신정훈;상병인;정윤철;정연규
    • 한국물환경학회지
    • /
    • 제21권6호
    • /
    • pp.624-629
    • /
    • 2005
  • The purpose of this study is to investigate the performance of nitrogen removal using autotrophic microorganism in the Membrane-Attached Biofilm Reactor (MABR). The treatment system consists of an aerobic MABR (R1) for nitrification and an anaerobic MABR (R2) for hydrogenotrophic denitrification. Oxygen and hydrogen were supplied through the lumen of hollow-fiber membranes as electron acceptor and donor, respectively. In phase Ι, simultaneous organic carbon removal and nitrification were carried out successfully in R1. In phase II, to develop the biofilm on the hollow-fiber membrane surface and to acclimate the microbial community to autotrophic condition, R1 and R2 were operated independently. The MABRs, R1 and R2 were connected in series continuously in phase III and operated at HRT of 8 hr or 4 hr with $NH_4{^+}-N$ concentration of influent, from 150 to 200 mgN/L. The total nitrogen removal efficiency reached the maximum value of 99% at the volumetric nitrogen loading rate of $1.20kgN/m^3{\cdot}d$ in the combined MABR system with R1 and R2. The results in this study demonstrated that the combined MABR system could operate effectively for the removal of nitrogen in wastewater not containing organic materials and can be used stably as a high rate nitrogen removal technology.

해수 조건에서 모래유동층 여과조의 TAN 부하량과 수온에 따른 질산화 효율 (Nitrification Efficiency of the Fluidized Sand Biofilter by TAN Leading Rates and Temperatures in the Simulated Seawater Aquaculture Condition)

  • 박정환
    • 한국수산과학회지
    • /
    • 제38권6호
    • /
    • pp.347-352
    • /
    • 2005
  • These experiments investigated the conditioning pattern and the nitrification efficiency of a fluidized sand biofilter (FSB) for seawater application. The FSB fed artificial nutrient was fully conditioned within 22 weeks. The maximum nitrification efficiency of the FSB was achieved at a superficial water velocity (SWV) of 1.0 cm/sec. After fixing the superficial water velocity at 1.0 cm/sec, the nitrification rates of the FSB were assessed at 3 total ammonia nitrogen (TAN) loading rates (250, 500, 1,000 g TAN/$m^3$/day) and 3 water temperatures (12, 16, $20^{\circ}C$). The TAN concentration in the simulated culture tank ranged from 2.87 to 9.72 mg/L at TAN loading rate of 1,000 g TAN/$m^3$/day, while that ranged from 0.45 to 1.26 mg/L at TAN loading rate of 500 g TAN/$m^3$/day. The ranges of TAN concentration in the former were too high for aquatic organisms and those in the latter were acceptable. Therefore, the safe TAN loading rate for the FSB in seawater conditions was decided as 500 g TA/$m^3$/day. From these results, daily TAN removal rates (g TAN/$m^3$/day) of FSB under conditions of inlet TAN concentration (C, mg/L) and water temperature (T, $^{\circ}C$) were calculated by the following non-linear multi-regression equation: TAN removal rate: f(z)=-1,311.295+655.714LnT+225.775LnC ($r^2=0.962$).

Off-design performance evaluation of multistage axial gas turbines for a closed Brayton cycle of sodium-cooled fast reactor

  • Jae Hyun Choi;Jung Yoon;Sungkun Chung;Namhyeong Kim;HangJin Jo
    • Nuclear Engineering and Technology
    • /
    • 제55권7호
    • /
    • pp.2697-2711
    • /
    • 2023
  • In this study, the validity of reducing the number of gas turbine stages designed for a nitrogen Brayton cycle coupled to a sodium-cooled fast reactor was assessed. The turbine performance was evaluated through computational fluid dynamics (CFD) simulations under different off-design conditions controlled by a reduced flow rate and reduced rotational speed. Two different multistage gas turbines designed to extract almost the same specific work were selected: two- and three-stage turbines (mid-span stage loading coefficient: 1.23 and 1.0, respectively). Real gas properties were considered in the CFD simulation in accordance with the Peng-Robinson's equation of state. According to the CFD results, the off-design performance of the two-stage turbine is comparable to that of the three-stage turbine. Moreover, compared to the three-stage turbine, the two-stage turbine generates less entropy across the shock wave. The results indicate that under both design and off-design conditions, increasing the stage loading coefficient for a fewer number of turbine stages is effective in terms of performance and size. Furthermore, the Ellipse law can be used to assess off-design performance and increasing exponent of the expansion ratio term better predicts the off-design performance with a few stages (two or three).

HRT 변경에 따른 호기성 그래뉼 슬러지의 오염원 제거효율에 미치는 영향 (Effects of Different Hydraulic Retention Times on Contaminant Removal Efficiency Using Aerobic Granular Sludge)

  • 김현구;안대희
    • 한국환경과학회지
    • /
    • 제28권8호
    • /
    • pp.669-676
    • /
    • 2019
  • The purpose of this study was to evaluate the effects of different Hydraulic Retention Times (HRTs) on the contaminant removal efficiency using Aerobic Granular Sludge (AGS). A laboratory-scale experiment was performed using a sequencing batch reactor, and the Chemical Oxygen Demand (COD), nitrogen, orthophosphate removal efficiency, AGS/MLSS ratio, and precipitability in accordance with the HRT were evaluated. As a result, the COD removal efficiency was not significantly different with the reduction in HRT, and at a HRT of 6 h, the removal rate was slightly increased owing to the increase in organic loading rate. The nitrogen removal efficiency was improved by injection of influent division at a HRT of 6 h. As the HRT decreased, the MLSS and AGS tended to increase, and the sludge volume index finally decreased to 50 mL/g. In addition, the size of the AGS gradually increased to about 1.0 mm. Therefore, the control of HRT provides favorable conditions for the stable formation of AGS, and is expected to improve the contaminant removal efficiency with the selection of a proper operation strategy.

분류식 하수관거로의 전환시 유입하수의 성상 변화 및 선회와류식 SBR공법의 처리 특성 (Change in Influent Concentration of Domestic Wastewater from Separated Sewer and Biological Nitrogen and Phosphorus Removal of a Full Scale Air-vent SBR)

  • 이장희;강호
    • 한국물환경학회지
    • /
    • 제28권1호
    • /
    • pp.63-70
    • /
    • 2012
  • This study was carried out to investigate change in influent concentration of domestic wastewater flowed from a newly constructed separate sewer system (SSS) and biological nutrients removal efficiency of a full scale Air-vent sequential batch reactor (SBR, $600m^3/d$). The average concentration of $BOD_5$, SS, T-N and T-P from SSS were 246.5 mg/L, 231.6 mg/L, 42.974 mg/L, 5.360 mg/L, respectively which corresponds to 2.2times, 1.2times, 1.8times and 2.1times higher than those from the conventional combined sewer system (CSS). The removal efficiency of $BOD_5$, SS, T-N, and T-P for the Air-vent SBR operated with influent from SSS averaged 99.1%, 99.0%, 91.2%, and 93.5%, respectively. Especially the respective nitrogen and phosphorus removal was 15% greater than that of the SBR operated with influent from CSS. Simultaneous nitrification and denitrification (SND) was observed in an aerobic reactor(II) as a result of DO concentration gradient developed along the depth by the Air-vent system. In order to achieve T-N removal greater than 90%, the C/N ratio should be over 6.0 and the difference between $BOD_5$ loading and nitrogen loading rate be over 100 kg/day (0.130 kg $T-N/m^3{\cdot}d$). Even with high influent T-P concentration of 5.360 mg/L from SSS (compared with 2.465 mg/L from CSS) T-P removal achieved 93.5% which was 15.5% higher than that of the SBR with influent from CSS. This is probably due to high influent $BOD_5$ concentration from SSS that could provide soluble carbon source to release phosphorus at anaerobic condition. In order to achieve T-P removal greater than 90%, the difference between $BOD_5$ loading and phosphorus loading rate should be over 100 kg /day (0.130 kg $T-N/m^3{\cdot}d$).

인공습지의 농촌지역 오수정화시설에 적용가능성 연구 (Feasibility Study of Constructed Wetland for the Wastewater Treatment in Rural Area)

  • 윤춘경;권순국;권태영
    • 한국농공학회지
    • /
    • 제40권3호
    • /
    • pp.83-92
    • /
    • 1998
  • Field experiment was performed from August 1996 to January 1998 to examine the applicability of constructed wetland system for wastewater treatment in rural area. The pilot plant was installed in Kon-Kuk University and the school building septic tank effluent was used as an influent to the treatment basin. Hydraulic loading rate was about 0.1 6$0.16^3/m^2$ day and theoretical detention time in the system was 1.38 days. The treatment basin was composed of sand and reed. The influent DO concentration was low and many cases close to zero, but effluent concentration was higher than the influent which implies that oxygen was supplied naturally. The average concentration of influent BOD was 126mg/L, and with average removal rate of 69 % the average effluent concentration was 4Omg/L which satisfied the effluent water quality standard for the system of interest. The average influent concentration of COD was 2Olmg/L and average effluent concentration was 75mg/L with average removal rate of 60%. The performance of BOD and COD tends to deteriorate in the low temperature, and appropriate action needs to be taken during the cold winter time for stable operation. The average influent concentration of SS was 5Omg/L, and effluent was 1 1mg/L with average removal rate of 76% which satisfied the effluent water quality standard for the system of interest. The results for the regulated components, SOD and SS, from the experiment showed that constructed wetland system can meet the effluent water quality standards. The average influent concentration of total phosphorus was 25.6mg/L and average effluent concentration was 7.8mg/L with average removal rate of 63%. Not like the performance of the above components, average nitrogen removal rate was only 11.2% which is not satisfactory. Although, nitrogen is not regulated at this moment, it can cause many environmental problems including eutrophication. Therefore, nitrogen removal efficiency should be improved for actual application. From the result of the field experiment, constructed wetland system was thought to be an appropriate alternative for wastewater treatment in rural area.

  • PDF

회전원판공정을 이용한 하수의 질산화에 관한 연구 (A Study on the Rotating Biological Contactors for the Nitrification of Sewage)

  • 정근진;이상수;김시현;박규홍
    • 한국물환경학회지
    • /
    • 제18권2호
    • /
    • pp.189-199
    • /
    • 2002
  • Nitrogen, in its various forms, can deplete dissolved oxygen levels in receiving waters, stimulate aquatic growth, exhibit toxicity toward aquatic life and affect the suitability of sewage for reuse. Pilot-scale Rotating Biological Contactor(RBC) experiments were conducted to examine biological nitrification, respectively, of municipal sewage with five different internal recirculation ratios of 0, 1, 2, 3, and 4 using the constant hydraulic loading of $205L/m^2{\cdot}day$. The use of internal recirculation improved nitrification on account of the dilution of biodegradable organic carbon in influent sewage down to 15 mg/L of $SBOD_5$ or less. Ammonium nitrogen of $14.3{\pm}2.4%$ was consumed by cellular assimilation without the occurrence of denitrification. The thickness of biofilm didn't seem effect significantly the nitrification and denitrification. Nitrification with internal recirculation was found to occur using hydraulic loading rate of as high as $205L/m^2{\cdot}day$, which was beyond the generally known values of it.

회전원판을 이용한 해수 순환여과 시스템에서 암모니아 부하율에 따른 암모니아 제거율 (Ammonia removal rate on ammonia loading rates in seawater filtering system using rotating biological contactor (RBC))

  • 손맹현;전임기;조기채;김광수
    • 한국수산과학회지
    • /
    • 제33권4호
    • /
    • pp.367-372
    • /
    • 2000
  • 회전원판식 해수 여과시스템에서 암모니아성 질소 부하율과 수리학적 부하량이 암모니아 제거율에 미치는 영향을 조사하기 위하여 일련의 실험을 실시하였다. 이 실험에서 회전원판 시스템은 폴리비닐필름 원판으로 여과조를 제작하였는데, 여과조의 표면적은 $12m^2$으로 용적은 $0.075m^3$이다. 회전원판식 시스템에서 암모니아성 질소부하율에 따른 암모니아 제거율을 조사하기 위하여 암모니아원으로 염화암모늄을 $10{\~}150 g$ 첨가하였다. 회전원판식 순환여과 사육시스템의 사육수에 암모니아원으로 염화암모늄을 $10{\~}150 g$ 투입하여 사육수의 암모니아 농도 (x: NH_4-N mg/l)에 따라 회전원판 여과조에서의 암모니아 제거에 필요한 시간 (y: hr)을 조사하였으며, 그 관계식은 다음과 같았다. $y=3.51+7.76 lnx (r^2=0.936)$사육수의 암모니아 농도가 2mg/l일 때 회전원판 여과사육 시스템에서 암모니아 제거에 소요되는 시간은 10시간이었으나, 암모니아 농도가 5와 16.5mg/l에서는 각각 16과 27시간이 소요되었다. 따라서 사육수의 암모니아 농도가 높아질수록 암모니아 제거에 소요되는 시간이 감소하는 경향을 나타내었다. 결론적으로 회전원판 여과 사육시스템의 최대 암모니아 제거율은 사육수의 암모니아 농도가 16.5 mg/l까지 상승함에 따라 증가함을 알 수 있었다.

  • PDF