• Title/Summary/Keyword: Nitrogen Isotope

Search Result 143, Processing Time 0.023 seconds

An Assessment of Primary Productivity Determined by Stable Isotopes and Diving-PAM in the Pyropia Sea Farms of the Manho (Jindo-Haenam) Region on the Southwestern Coast of the Korean Peninsula (안정동위원소 및 Diving-PAM을 이용한 남서해안 만호해역 (진도-해남) 김 양식장에서의 일차 생산력)

  • Kim, Jeong Bae;Lee, Won-Chan;Kim, Hyung Chul;Hong, Sokjin
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.1
    • /
    • pp.18-29
    • /
    • 2016
  • The effects of water temperature, salinity, water column nutrient contents, and phytoplankton primary productivity on pigment composition and concentration, as well as primary productivity of Pyropia yezoensis Ueda purple lavers were studied at the primary cultivation areas in the Manho (Jindo-Haenam) region on the southwestern coast of Korea in March 2014. The water temperature was $9.1{\sim}9.6^{\circ}C$, salinity was 32.5~33.1, and transparency was 0.7~1.5 m. The shallow euphotic depth resulted from the high turbidity. Water column dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP), and silicate concentrations were $3.59{\sim}5.73{\mu}M$, $0.16{\sim}0.41{\mu}M$, and $12.41{\sim}13.94{\mu}M$, respectively. Chlorophyll a (Chl a) concentration was $0.51{\sim}1.25{\mu}g\;L^{-1}$. Nanoplankton ($0.7{\sim}20{\mu}m$ size class) accounted for 58% of the total Chl a concentration. Fucoxanthin was the dominant photosynthetic pigment at all sites. Microplankton ($20{\sim}200{\mu}m$ size class) accounted for 64% of the total fucoxanthin concentration. The primary productivity of phytoplankton was $57.72{\pm}4.67(51.05{\sim}66.71)mg\;C\;m^{-2}d^{-1}$. The nanoplankton ($0.7{\sim}20{\mu}m$ size class) accounted for 77% of the total phytoplankton primary productivity. The calculated phytoplankton primary productivity was $11,337kg\;C\;d^{-1}$. The primary productivity of Pyropia blades was $1,926{\pm}192(1,102{\sim}2,597)mg\;C\:m^{-2}d^{-1}$, i.e., calculated as $39,295kg\;C\;d^{-1}$. The total primary productivity of phytoplankton and Pyropia blades was $50,632kg\;C\;d^{-1}$. The primary productivity of Pyropia blades was 3.5 times greater than that of phytoplankton in the Manho region on the southwestern coast of Korea.

Concentrations and Natural 15N Abundances of NO3-N in Groundwater and Percolation Water from Intensive Vegetable Cultivation Area in Japan (일본 노지채소 집약 재배지역 토양 침출수 중의 NO3-N 농도와 질소 안정동위원소 자연존재비(δ15N))

  • Park, Kwang-Lai;Choi, Jae-Seong;Baek, Hyung-Jin;Kim, Won-Il;Jung, Goo-Bok;Yun, Sun-Gang;Cho, Jin-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.3
    • /
    • pp.119-126
    • /
    • 2003
  • Nitrate-N concentrations and the corresponding ${\delta}^{15}N$ values were determined with water samples collected periodically from artesian wells (3 and 6 m deep), underdrainage and gushout waters in a Welsh onion cultivated area in the Kushibiki Fan, Saitama Prefecture, Japan. Average $NO_3-N$ concentrations in waters from 3 and 6 m wells were 25.7 and $2.8mg\;L^{-1}$, whereas ${\delta}^{15}N$ values were 3.6 and 4.7‰, respectively. The $NO_3-N$ concentration and ${\delta}^{15}N$ value of the underdrainge water were $35.5mg\;L^{-1}$ and 6.6‰, reflecting rapid input of chemical fertilizers and farmyard manure. The mean values of $NO_3-N$ concentration and ${\delta}^{15}N$ in the gushout water flown out of the edge of Kushibiki Fan were $19.4mg\;L^{-1}$ and 7.9‰, respectively. As a results the ${\delta}^{15}N$ values of the gushout water were higher than those of the artesian wells and underdrinage water. The ${\delta}^{15}N$ values of total-N and $NO_3-N$ of the soils were 6.1 and 5.10‰, respectively, while those for nitrification-inhibitor containing fertilizer and slow-release fertilizers were -6.1 and -2.2‰, respectively.

The Behaviors of Phosphorus-32 and Ptoassium-42 under the Control of Thermoperiod and Potassium Level (가리(加里)와 온도주기성(溫度週期性)이 고구마 생육(生育) 및 인(燐)-32, 가리(加里)-42 동태(動態)에 미치는 영향(影響))

  • Kim, Y.C.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.1 no.1
    • /
    • pp.89-115
    • /
    • 1968
  • 1. The experiment was carried out for investigating the interaction between potassium nutrition and thermoperiod (as an environment regulating factor) in relation to behaviors of several nutrients including phosphorus-32 and Potassium-42 in IPOMOEA BATAS. 2. To obtain same condition to trace the behaviors of phosphorus and potassum-42 they were simultaneously incorporated to roots. The determination of each CPM by counting twice with adequate interval and calculating true CPM of each isotope according to different half-life, was carried out with satisfactory. 3. Some specific symptoms i.e, chlorosis and withering of growing point under the condition of lower potassium level were found and was accelerated by the low night temperature. 4. A manganese shortage in growing point of the lower potassium level was found by activiation analysis and very low distribution ratio of phosphorus-32 and potassium-42 in the growing point of the lower potassium level was manifested, though the contents of nitrogen, phosphorus, potassium, sodium and magnesium were not in great difference. 5. In addition to the low water content with appearence of "hard", shorterning internode and lower ratio of roots to shoot as well as the symptoms of potassium deficiency such as brown spot in leaf blade and necrosis of leaf margin were appeared at later stage of experiment at the lower potassium level. 6. Very stimulating vegetative growth, e.g, large plant length, leaf expansion, increasing node number and fresh weight as well as high ratio of roots to shoot, high water content was resulted in the condition of higher potassium level. 7. A specific interaction between higher potassium level and thermoperiod was found, that is, the largest tuber production and the largest ratio of roots to shoot were resulted in the combined condition of higher potassium level and constant temperature while the largest plant length, fresh weight etc. i.e. the most stimulative vegetative growth was resulted in the combined condition of higher potassium level and low night temperature. 8. Comparatively low water content in the former condition of stimulative tuber production was resulted(especially at the tuber thickening stage), while high water content in the latter condition of stimulative vegetation was resulted though the higher potassium level made generally high water contents. 9. The nitrogen contents of soluble and insoluble did not make distinct difference between the lower and higher potassium level. 10. Though the phosphorus contents were not distinctly different by the potassium level, the lower potassium level made the percentage of phosphorus increased at tuber forming stage accumulating more phosphorus in roots, while the higher potassium level decreased percentage of phosphorus at that stage. 11. The higher potassium level made distinctly high potassium contents than the lower potassium level and increased contents at the tuber forming stage through both conditions. 12. The sodium contents were low in the condition of higher potassium level than the lower potassium level and decreased at tuber forming stage in both conditions, on the contary of potassium. 13. Except the noticeable deficeney of manganese in the growing point of the lower potassium level, mangense and magnesium contents in other organs did not make distinct difference according to the potassium level. 14. Generally more uptake and large absorption rate of phosphorus-32 and potassium-42 were resulted at the higher potassium level, and the most uptake, and the largest absorption rate of phosphorus and potassium-42 (especially potassium-42 at tuber forming stage) were resulted in the condition of higher potassium level and constant temperature which made the highest tuber production. 15. The higher potassium level stimulated the translocation of phoshorus-32 and potassium-42 from roots to shoots while the lower potassium level suppressed or blocked the translocation. 16. Therefore, very large distribution rate of $p^{32}$, $K^{42}$ in shoot, especially, in growing point, compared with roots was resulted in the higher potassium level. 17. The lower potassium level suppressed the translocation of phosporus-32 from roots to shoot more than that of potassium-42. 18. The uptake of potassium-42 and translocation in IPOMOEA BATATAS were more vivid than phosphorus-32. 19. A specific interaction between potassium nutrition and thermoperiod which resulted the largest tuber production etc. was discussed in relation to behaviors of minerals and potasium-42 etc. 20. Also, the specific effect of the lower and higher potassium level on the growth pattern of IPOMOEA BATATAS were discussed in relation to behaviors of minerals and isotopes. 21. An emphasize on the significance of the higher potassium level as well as the interaction with the regulating factor and problem of potassium level (gradient) for crops product ion were discussed from the point of dynamical and variable function of potassium.

  • PDF