• 제목/요약/키워드: Nitrogen(N)

검색결과 5,612건 처리시간 0.028초

Effect of Nitrogen Levels and Harvest Intervals on Dry Matter Yield of Barnyard Millet

  • Lee, Bae Hun;Choi, Ki Choon;Yang, Seung Hak;Oh, Mirae;Park, Hyung Soo
    • 한국초지조사료학회지
    • /
    • 제42권3호
    • /
    • pp.176-182
    • /
    • 2022
  • The aim of this study was to investigate dry matter productivity and nitrate nitrogen content in the growth stages of barnyard millet (Echinochloa esculenta) cultivated for feed, which was treated with different nitrogen fertilization levels. An early variety of barnyard millet (cv. Shirohie) was used for the test, and the different treatments with nitrogen fertilizer were as follows: 50% (N-40 kg/ha, T1), 100% (N-80 kg/ha, reference amount, T2), 150% (N-120 kg/ha, T3), 200% (N- 160 kg/ha, T4), 250% (N-200 kg/ha, T5), and 300% (N-240 kg/ha, T6). Sowing was done on May 13, 2021 and plants were harvested for four stage; vegetative stage, elongation stage, heading stage, and milk stage. The length of the millet increased significantly as the amount of nitrogen fertilization increased during the harvest period (p<0.05), but the difference was insignificant during the milk stage (p>0.05). Moreover, barnyard millet dry matter yield increased significantly as the levels of nitrogen fertilization increased (p<0.05), but there was no significant difference in dry matter yield among nitrogen fertilization levels during the heading stage (p>0.05). Chlorophyll also was significantly higher in T5 (250%) at all harvesting times, whereas nitrate nitrogen content was highest at the vegetative stage, gradually decreased as growth progressed, and lowest at the milk stage. Finally, as the nitrogen fertilization levels increased, the nitrate nitrogen content was significantly higher in all treatment groups (p<0.05). Therefore, our results suggest that the most appropriate nitrogen fertilizer levels is between 150%-200%, considering the dry matter yield, feed ingredients and nitrate nitrogen content in barnyard millet for feed.

자유로운 식이와 활동을 유지하는 한국 여대생의 에너지와 단백질대사에 대한 연구(2) : 질소섭취와 평형 (Nutritional Status and Requirements of Protein and Energy in Female Korean College Students Maintaining Their Usual and Activity(2) : Nitrogen Intake and Balance)

  • 김주연
    • Journal of Nutrition and Health
    • /
    • 제28권4호
    • /
    • pp.259-267
    • /
    • 1995
  • A study was conducted to investigate nitrogen balance and to estimate daily nitrogen requirement in 43 Korean female college students students maintaining their usual diet and activity levels. Nitrogen intake and excretion were measured in two separate peroids about one month apart, each period lasting for 3 days. Nitrogen intake was assessed by duplicate portion analysis of diet, and N excretion in faces and urine were measured during the study period. Mean daily nitrogen intake level was 129.3mg/kg B.W and the apparent digestibility of nitrogen was 76%. Mean daily urinary nitrogen excretion was 113.5mg/kg BW. 895 of total nitrogen intake. Mean daily nitrogen balance of subjects was -14.5mg/kg BW. Mean daily requirements of nitrogen for 0 balance, calculated by regression analysis of N balance and energy-adjusted N intake. were 1) 197.mg/kg B.W with the present energy intake level of the study subjects. 2) 157mg/kg B.W when energy intake is sufficient to maintain energy balance, and 30 130mg/kg B.W. when energy intake is Korean RDA level for moderate activity. When energy intake level is sufficient to meet their requirement, daily protein requirement for 0 balance is about 1.0g/kg B.W. The results of this study indicate that nitrogen intake level of young female college students is not sufficient to meet their requirements, and they should increase protein intake together with increase in energy intake.

  • PDF

팔당호의 질소거동과 수지 (The Nitrogen Behavior and Budget in Lake Paldang)

  • 이장호;박혜경;이규;김은미
    • 한국물환경학회지
    • /
    • 제26권1호
    • /
    • pp.71-80
    • /
    • 2010
  • We studied the nitrogen behavior and budget of Lake Paldang from March to December 2008. The particulate nitrogen (PN) concentrations ranged from 7 to 13% of the total nitrogen concentration (TN) in the stream inflows, the downstream outflow, and the lake water. The nitrate nitrogen ($NO_3-N$) concentration ranged from 67 to 78% of the TN. In the three rivers of Lake Paldang, Gyeongan River (In3 site) had the highest average of the TN, 5.037 mgN/L, but North Han River (In2 site) had the lowest average TN, 1.683 mgN/L. South Han River (In1 site) had the average TN of 2.399 mgN/L. In the dam discharge, TN showed the average 2.063 mgN/L. In the lake water, L4 site (Gyeongan River area) had the highest average TN, 3.781 mgN/L, but L3 site (North Han River) had the lowest average TN, 1.587 mgN/L. Total input of nitrogen loads to Lake Paldang was about 30,875 ton/year in 2008. Inflow rivers contributed 30,643 ton/year (South Han River: 18,111 ton/year (59%), North Han River: 11,333 ton/year (37%), and Gyeongan River: 1,199 ton/year (4%)). The atmospheric deposition had 135 ton/year, the nitrogen release from the bottom sediments had 88 ton/year, and macrophytes had 9 ton/year. Total output of nitrogen loads from Lake Paldang was about 31,256 ton/year. The downstream from dam contributed 29,877 ton/year, and the sediment deposition was 1,379 ton/year.

무기태 질소시비가 초지의 수량과 식생구성에 미치는 영향 I. 초지의 수량과 경제적 무기태 질소시비한계 (efficiency of Mineral Nitrogen Fertilization on Yield and Botanical Composition of Grassland I. Dry matter yield and economical mineral nitrogen of grassland)

  • 조익환
    • 한국초지조사료학회지
    • /
    • 제10권2호
    • /
    • pp.102-109
    • /
    • 1990
  • This experiment was carried out to study the effect of pure mineral nitrogen fertilizing on dry matter yield of grassland and the advisable mineral nitrogen amounts in long duration under practical conditions at the "Federal Institute for Agriculture in the Alps" in Austria. The application rates were 0, 30, 60,90 and 120 kg N/ha/cut, the cutting regimes 3-, 4-, 5- and 6-cuts/year. In order to explain the nitrogen-profitability were determined that 1 kg pure mineral nitrogen have to produce 8 - 16 kg DM/kg N in dependence on cutting regimes and requiring of nitrogen efficiencies. The results were as follows: 1. With only PK-fertilizaing average dry matter yields from 4.0 to 7.6 tons per ha and year were obtained. 2. Within all applied cutting regimes 60 kg min. Nlhalgrowth have proved to be the most efficient application rate witn 13 - 24 kg DM/kg N in dependent of cutting regimes. Comapred with only PK-treatment the DM yields increased by 3.9 - 4.7 t/ ha nad year. 3. By the sigmaformed process of Input-Output curve the highest marginal yield (the "most efficient" Ndressing rate) per ha and year was calculated: 152 kg N at 3-cut regimes, 204 kg N at 4-cut regimes, 220 kg N at 5-cut regimes and 240 kg N/ha/year at 6-cut regimes. 4. With required efficiencies of 16 and 12 kg DM/kg N 240 - 300 kg N per ha and year respectively would have to be applied at 3-cut regimes; with required efficiencies of 12 and 10 kg DM/kg N at 4-cut regimes the appropriate figures ranged from 320 to 420 kg N/ha and year, at 5- and 6-cut regimes and efficiencies of 10 and 8 kg DM/kg N results of 360 - 460 kg N and 380 - 500 kg N respectively were obtained. 5. At the relatively dry location Piber the highest dressing rates were needed in order to obtain the efficiencies from 8 to 16 kg DM/kg N, about 30 - 60 kg N/ha/year more than at the relatively moist location Admont.ist location Admont.

  • PDF

질소 시비 수준별 금잔디의 생육과 질소 시비량 설정 (Establishment of a Standard Nitrogen Application Rate for Zoysia matrella Using Growth Responses to Various Fertilization Level)

  • 김영선;최문진;윤정호;이긍주
    • 한국환경농학회지
    • /
    • 제41권3호
    • /
    • pp.167-176
    • /
    • 2022
  • BACKGROUND: Nitrogen (N) is an important element for turfgrass (Zoysia matrella) growth; however, standard N application rate for turfgrass is not established yet. This study was conducted to evaluate the effect of N application rates on the growth and quality of turfgrass for establishment of standard N application rate. METHODS AND RESULTS: Treatments were as follows; control (0 N g/m2/month), 1N (1 N g/m2/month), 2N(2 N g/m2/month), 3N (3 N g/m2/month), 4N (4 N g/m2/month), and 5N (5 N g/m2/month). N application improved visual turfgrass quality. Compared with the control, clipping yield of all N treatments increased by 90~194%. The grass shoot weight of 3N, 4N, and 5N treatments increased by 52%, 43%, and 111%, respectively, and the stolon weight of 4N and 5N treatments increased by 412% and 201%, respectively, compared to the control. The N uptake amount and N recovery rate were estimated to be 4.10~6.28 g/m2 and 14~58%, respectively. CONCLUSION(S): These results indicate that considering visual quality, clipping yield, N uptake amount, and N recovery, the application rate of 2~3 N g/m2/month was suggested to be suitable for Z. matrella production.

Nitrogen Dynamics in Soil Amended with Different Rate of Nitrogen Fertilizer

  • Kim, Sung Un;Choi, Eun-Jung;Jeong, Hyun-Cheol;Lee, Jong-Sik;Lee, Hyun Ho;Park, Hye Jin;Hong, Chang Oh
    • 한국토양비료학회지
    • /
    • 제50권6호
    • /
    • pp.574-587
    • /
    • 2017
  • Excessive application of nitrogen (N) fertilizer to support switchgrass growth for bioenergy production may cause adverse environmental effects. The objective of this study was to determine optimum N application rate to increase biomass yield of switchgrass and to reduce adverse environmental effects related to N. Switchgrass was planted in May 2008 and biomass yield, N uses of switchgrass, nitrate ($NO_3$) leaching, and nitrous oxide ($N_2O$) emission were evaluated from 2010 through 2011. Total N removal significantly increased with N rate despite the fact that yield did not increased with above $56kg\;N\;ha^{-1}$ of N rate. Apparent nitrogen recoveries were 4.81 and 5.48% at 56 and $112kg\;N\;ha^{-1}$ of N rate, respectively. Nitrogen use efficiency decreased into half with increasing N rate from 56 to $112kg\;N\;ha^{-1}$. Nitrate leaching and $N_2O$ emission were related to N use of switchgrass. There was no significant difference of cumulative $NO_3$ leaching between 0 and $56kg\;N\;ha^{-1}$ but, it significantly increased at $112kg\;N\;ha^{-1}$. There was no significant difference of cumulative $N_2O$ emission among N rates in crest, but it significantly increased at $112kg\;N\;ha^{-1}$ in toe. Excessive N application rate (above $56kg\;N\;ha^{-1}$) beyond plant requirement could accelerate $NO_3$ leaching and $N_2O$ emission in switchgrass field. Overall, $56kg\;N\;ha^{-1}$ might be optimum N application rate in reducing economic waste on N fertilizer and adverse environmental impacts.

Effects of Nitrogen Sources and C/N Ratios on the Lipid-Producing Potential of Chlorella sp. HQ

  • Zhan, Jingjing;Hong, Yu;Hu, Hongying
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권7호
    • /
    • pp.1290-1302
    • /
    • 2016
  • Microalgae are being researched for their potential as attractive biofuel feedstock, particularly for their lipid production. For maximizing biofuel production, it is necessary to explore the effects of environmental factors on algal lipid-producing potential. In this study, the effects of nitrogen (N) sources (NO2-N, NO3-N, urea-N, NH4-N, and N-deficiency) and carbon-to-nitrogen ratios (C/N= 0, 1.0, 3.0, and 5.0) on algal lipid-producing potential of Chlorella sp. HQ were investigated. The results showed that for Chlorella growth and lipid accumulation potential, NO2-N was the best amongst the nitrogen sources, and NO3-N and urea-N also contributed to algal growth and lipid accumulation potential, but NH4-N and N-deficiency instead caused inhibitory effects. Moreover, the results indicated that algal lipid-producing potential was related to C/N ratios. With NO2-N treatment and carbon addition (C/N = 1.0, 3.0, and 5.0), total lipid yield was enhanced by 12.96-20.37%, but triacylglycerol (TAG) yields decreased by 25.52-94.31%. As for NO3-N treatment, carbon addition led to a 17.82-57.43%/25.86-82.67% reduction of total lipid/TAG yields. When NH4-N was used as the nitrogen source, total lipid/TAG yields were increased by 46.67-113.33%/28.99-74.76% with carbon addition. The total lipid/TAG yields of urea-N treatment varied with C/N ratios. Overall, the highest TAG yield (TAG yield: 38.75 ± 5.21 mg/l; TAG content: 44.16 ± 4.35%) was achieved under NO2-N treatment without carbon addition (C/N = 0), the condition that had merit for biofuel production.

질소시비에 대한 Sudangrass의 생육 및 수량반응과 질소이용성 (Effect of Nitrogen Fertilization on Growth, Forage Yield and Nitrogen Use of Sudangrass)

  • 윤진일;이호진
    • 한국작물학회지
    • /
    • 제27권1호
    • /
    • pp.66-71
    • /
    • 1982
  • 질소시비에 대한 sudangrass의 생장 및 수량반응과 질소이용성에 관한 정보를 얻기 위해 서울대 농대 실험농장에서 품종 ‘Piper’ sudan을 파종하고 년간 100, 200, 400, 800kg/ha 수준의 질소비료를 시용하여 1979년과 1980년에 반복실험을 실시한 바 다음의 결과를 얻었다. 1. 질소증시에 의한 엽면적과 건물중은 1979년 400kg.N/ha.year, 1980년 800kg.N/ha.year수준까지 계속 증가하였으며 저온과 일사량의 부족으로 1980년의 건물수량은 1979년에 비하여 대체로 낮았다. 2. 엽면적지수(LAI)가 증가함에 따라 작물생장속도(CGR)은 정의 직선회귀를 보였다. 3. 질소의 증시에 따라 체내 전질소함량은 증가하는 경향이었으나 각재생기별로 최고수준은 달랐으며 전질소함량은 차이가 크게 났다. 아울러 NO$_3$$^{-}$N 함량은 800kg.N/ha.year 수준에서 급격히 증가하여 중독을 유발하는 위험수준을 초과하였다. 4. 지상부 식물체에 의한 질소회수율은 평균 34%에 불과하였고 시비수준에 따른 경향은 명백하지 않았다. 5. Sudangrass는 고온.다조 조건에서 순동화속도(NAR)가 증가되었고 단위질소시용량당 건물생산량으로 표시된 질소시용 효율은 향상되었다.

  • PDF

Effect of Mixed Treatment of Nitrogen Fertilizer and Zeolite on Soil Chemical Properties and Growth of Hot Pepper

  • Park, Jun-Hong;Park, Sang-Jo;Kwon, Oh-Heun;Choi, Seong-Yong;Park, So-Deuk;Kim, Jang-Eok
    • 한국토양비료학회지
    • /
    • 제48권1호
    • /
    • pp.44-49
    • /
    • 2015
  • Urea has been the most useful N-source, due to lower cost per unit of N. But nitrogen use efficiency of urea may be reduced because of losses from agricultural system by volatilization of ammonia to atmosphere. This study was conducted to evaluate the nitrogen efficiency and growth of hot pepper (Capsicum annuum L.) by mixed treatment with nitrogen and zeolite. They were treated with N $161kg\;ha^{-1}$, N $230kg\;ha^{-1}$, nitrogenzeolite mixture (NZM) $161kg\;ha^{-1}$, NZM $230kg\;ha^{-1}$ and N $0kg\;ha^{-1}$, respectively. In the soil chemical properties after experiment, soil pH decreased but available $P_2O_5$, EC and total nitrogen increased in nitrogen-zeolite mixture treatment. $NO_3-N$ content in the soil showed the highest level in NZM $230kg\;ha^{-1}$. NZM $161kg\;ha^{-1}$ treatment increased growth and yield of hot pepper compared to urea alone. Nitrogen utilization efficiency of hot pepper plant was 47.15% at the treatment of NZM $161kg\;ha^{-1}$, while 36.74% at N $230kg\;ha^{-1}$. These results showed that application of mixture of nitrogen and zeolite had positive influence to improve the efficiency of nitrogen utilization and increase of red pepper yield.

질소시용 및 예초간격이 한국 잔디(Zoysia japonica Steud.)의 제잔디 구성요소 특성변화에 미치는 영향 (The Effect of Nitrogen Application and Clipping Interval on the Characteristics of Several Turf Components of Korean Lawn Grass (Zoysia japonica Steud.))

  • 심재성;윤익석
    • 아시안잔디학회지
    • /
    • 제1권1호
    • /
    • pp.18-29
    • /
    • 1987
  • This study was carried out to examine the effect of nitrogen application and clipping interval on the characteristics of several turf components of korean lawngrass for the basic data of lawn management. It was treated by Split plot design with three replications. The main plots were nitrogen levels with 0, 350, and 700kgN / ha, and the sub plots were clipping intervals with 10, 20, and 30 days The results obtained are summarized as follows ; 1. Increasing the rate of nitrogen fertilizer and frequent clipping increased tiller number of korean lawngrass and the maximum number of tillers obtained in October were recorded from 700kgN application and clipping treatment of 10 days interval. Meanwhile, treatment of 350kgN with 10 days clipping interval increased tillers much more than those of 700kgN with 20 and 30 days clipping intervals. 2. The average number of green leaves occurred during the growth period maximized by applying 700 kgN and clipping 10 days interval. 3. Increasing tiller numbers significantly decreased tops DM weight per tiller by clippng plants at interval of 10 and 20 days, irrespective of nitrogen applied, and with nil N, at the interval of 30 days. By applying 700kgN however, tops DM weight per tiller increased as the number of tillers increased consistently. 4. The highest tops DM weight was achieved from late August to early September by applying 350 and 700kgN. 5. During the growth period, nitrogen application increased unders(stolon+root) DM weight, and, at the same level of nitrogen applied, the increase in stolon DM weight enhanced by lengthening the clipping interval to 30 days. 6. Nitrogen efficiency to green leaves, stolon nodes and DM weight of root with high nitrogen was achieved as clipping interval was shortened.

  • PDF