• Title/Summary/Keyword: Nitroaromatic Compound

Search Result 4, Processing Time 0.015 seconds

Development and Application of an In Situ Technology to Treat Various Soil and Groundwater Contaminants

  • Goltz, Mark N.
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.10a
    • /
    • pp.89-110
    • /
    • 2003
  • The limitations of conventional soil and groundwater contamination remediation technologies have motivated a search for innovative technologies; particularly in situ technologies that do not require extraction of contaminants from the subsurface. All engineered in situ remediation systems require that the contaminant be mixed with a remedial compound. Horizontal flow treatment wells (HFTWs), an innovative technology that consists of a pair of dual-screened treatment wells, were used at a trichloroethylene (TCE) contaminated site to efficiently achieve this mixing of contaminant and remedial compound in order to effect in situ bioremediation (McCarty et al., 1998). In this paper, the potential of HFTWs to treat chlorinated aliphatic hydrocarbons (CAHs) as well as other soil and groundwater contaminants of concern, such as nitroaromatic compounds (NACs), perchlorate, and methyl-tert-butyl ether (MTBE), is examined. Through a combination of laboratory studies, model analyses, and field evaluations, the effectiveness of this innovative technology to manage these contaminants is investigated.

  • PDF

Role of Sodium lon in Biodegradation of Nitroaromatic Compound by Activated Sludge and Pure Cultures

  • Jo, Kwan-Hyung
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.3 no.3
    • /
    • pp.169-175
    • /
    • 1999
  • 2,4-Dinitrophenol(DNP) is a metabolic uncoupler that prevents cells from creating energy for growth and it has been suggested that the availability of sodium ions may be important in mitigating the effects of uncouplers. Accordingly, the degradation of DNP was investigated using activated sludge which had been adapted to mineralize DNP. After the acclimation of the activated sludge, the effect of sodium ions on the toxicity of high concentrations(80 to 100mg/L) of DNP was investigated over a sodium ion concentration range of 9.3$\times$10-5 to 94mM. The concentration of sodium ions in the activated sludge mixed liquor seemed to have little effect on the DNP toxicity. However, a lack of sodium in the grwoth media resulted in a reduction of the DNP degradation rate by a bacterial isolate from the activated sludge culture identified as Nocardia asteroides.

  • PDF

Efficient Fluorescence Quenching of tert-butyl substituted Phthalocyanines with Picric Acid

  • Gupta, Ankush;Kim, Meena;Park, Jong S.
    • Textile Coloration and Finishing
    • /
    • v.26 no.4
    • /
    • pp.277-282
    • /
    • 2014
  • Two tert-butyl substituted phthalocyanines(Pcs), in metal-free and metallated forms, were synthesized and the fluorescence responses toward various nitro derivatives, including picric acid(PA), 2,4-dinitrotoluene(DNT), 1,4-dinitrobenzene(DNB), 4-nitrotoluene(NT), nitrobenzene(NB), 1,4-benzoquinone(BQ), and nitromethane(NM) were investigated. Among the various nitro derivatives, current Pc derivatives exhibited efficient and exclusive fluorescence quenching in the presence of picric acid, which was readily observed by a naked eye. Quenching efficiency was estimated by the Stern-Volmer relationship, in which quenching constant, KSV, was calculated to be in the range of $10^4M^{-1}$. It was also found out that the aggregational behaviors of these Pcs are heavily dependent on the nature of solvent systems, subsequently affecting the quenching efficiency.

MOFs for the Detection of High Explosives (MOF를 이용한 극미량의 고폭화약 탐지)

  • LEE, Junwung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.376-386
    • /
    • 2015
  • MOFs(Metal-Organic Frameworks) are new kinds of materials comprised of metal ions and functional organic ligands, and have large pores in its rigid structures which give the materials various functionalities, including gas absorption, separation, drug delivery etc. Recently photoluminescence properties of MOFs and possibilities of its application to high explosive sensing technologies are drawing attentions from scientists and engineers, because these methods are simple, cheap and easy to perform detection operations. In this article the author reviews the mechanisms of photoluminescence of MOFs, the detection methods of high explosives using MOFs and recent research progresses based on the papers published mainly during last 10 years.