• Title/Summary/Keyword: Nitrite reduction

Search Result 141, Processing Time 0.031 seconds

Effect of Encapsulating Nitrate in Sesame Gum on In vitro Rumen Fermentation Parameters

  • Mamvura, Chiedza Isabel;Cho, Sangbuem;Mbiriri, David Tinotenda;Lee, Hong-Gu;Choi, Nag-Jin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.11
    • /
    • pp.1577-1583
    • /
    • 2014
  • Encapsulation is a method used to protect material from certain undesirable environments, for controlled release at a more favorable time and place. Animal productivity would be enhanced if feed additives are delivered to be utilized at their site of action, bypassing the rumen where they are likely to be degraded by microbial action. A novel method of encapsulation with sesame gum was used to coat nitrate, a known enteric methane mitigating agent, and tested for the effect on methane reduction and other in vitro fermentation parameters using rumen fluid from cannulated Hanwoo steers. Orchard grass was used as basal diet for fermentation. The treatments were matrix (1.1 g sesame gum+0.4 g sesame oil cake) only, encapsulated nitrate (matrix+nitrate [21 mM]), free nitrate (21 mM), and a control that contained no additive. Analyses of fermentation parameters were done at 0, 3, 6, 9, 12, 24, and 48 h time periods. In comparison to control, both free and encapsulated nitrate produced significantly reduced (p<0.01) methane (76% less) and also the total volatile fatty acids were reduced. A significantly higher (p<0.01) concentration of ammonia nitrogen was obtained with the encapsulated nitrate treatment (44%) compared to the free form (28%) and matrix only (20%) (p = 0.014). This might suggest slow release of encapsulated nitrate so that it is fully reduced to ammonia. Thus, this pioneering study found a significant reduction in methane production following the use of sesame gum encapsulated nitrate that shows the potential of a controlled release system in enhancing sustainability of ruminant production while reducing/eliminating the risk of nitrite toxicity.

Isolation and Characterization of Ammonia-removing Bacteria from a Food-wastewater Treatment Facility (식품 폐수 처리 시설에서 암모니아성 악취제거 세균의 분리 및 특성 분석)

  • Oh, Kyoung-Hee;Choi, In-Hak;Cho, Young-Cheol
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.6
    • /
    • pp.653-658
    • /
    • 2008
  • The bacteria responsible for the reduction of ammonia concentration in a food-wastewater treatment facility were isolated and their characteristics were analyzed. The isolated bacteria were closely related to the bacteria belonging to genus Citrobacter, Enterobacter, Buttiauxella, Shigella, and Aeromonas, which were found in gut of animals, indicating the isolated bacteria may come from the butchery-byproduct of pigs which is the main component of wastewater. When we monitored the concentration of nitrite and nitrate in the process, it was relatively constant, indicating the isolated bacteria reduce ammonia concentration through ammonia assimilation. Based on the removal efficiency of ammonia by the isolated bacteria, we concluded that they play a role in the reduction of odorous compounds.

Effect of Endothelin-1 on the Proliferation and Activity of HOS Cells (Endothelin-1이 HOS 세포의 증식과 활성에 미치는 영향)

  • Bae, Moon-Seo;Ko, Seon-Yle;Kim, Jung-Keun;Kim, Se-Won
    • Journal of Oral Medicine and Pain
    • /
    • v.26 no.4
    • /
    • pp.319-329
    • /
    • 2001
  • Endothelin-1 (ET-1) is a recently discovered potent vasoconstrictive peptide. It was first identified in vascular endothelial cells. ET-1 is a 21-amino acid peptide and elicits systemic effects such as stimulation of the production of atrial natriuretic peptide and release of aldosterone and corticosterone. In this study, to examine the role of ET-1 in the bone metabolism, effect of ET-1 on the proliferation and activity of osteoblastic cells was studied using HOS cells as osteoblast model. ET-1 dose-dependently increased the cell proliferation as determined by cell counting and MTT reduction assay after 48hr treatment. Alkaline phosphatase activity was inhibited by ET-1 and showed significant inhibition by 50 and 100 nM ET-1. ET-1 increased NBT reduction by HOS cells dose-dependently showing that ET-1 may increase the superoxide production by osteoblasts. Nitrite concentration in the media of HOS cell culture without cytokine stimulation was negligible and unaffected by ET-1 after 48hr treatment. Finally, after collection and concentration of conditioned media, gelatinase activity produced by HOS cells was determined by zymography. HOS cells can produce and secrete the gelatinase (gelatinase A type as determined by molecular weight of about 65,000) into culture media, however, ET-1 had no effect on the gelatinase activity. These findings suggest that ET-1 may have diverse effects on the proliferation and differentiation of osteoblasts, therefore, it may play an important role in bone metabolism.

  • PDF

Recent strategies for improving the quality of meat products

  • Seonmin Lee;Kyung Jo;Seul-Ki-Chan Jeong;Hayeon Jeon;Yun-Sang Choi;Samooel Jung
    • Journal of Animal Science and Technology
    • /
    • v.65 no.5
    • /
    • pp.895-911
    • /
    • 2023
  • Processed meat products play a vital role in our daily dietary intake due to their rich protein content and the inherent convenience they offer. However, they often contain synthetic additives and ingredients that may pose health risks when taken excessively. This review explores strategies to improve meat product quality, focusing on three key approaches: substituting synthetic additives, reducing the ingredients potentially harmful when overconsumed like salt and animal fat, and boosting nutritional value. To replace synthetic additives, natural sources like celery and beet powders, as well as atmospheric cold plasma treatment, have been considered. However, for phosphates, the use of organic alternatives is limited due to the low phosphate content in natural substances. Thus, dietary fiber has been used to replicate phosphate functions by enhancing water retention and emulsion stability in meat products. Reducing the excessive salt and animal fat has garnered attention. Plant polysaccharides interact with water, fat, and proteins, improving gel formation and water retention, and enabling the development of low-salt and low-fat products. Replacing saturated fats with vegetable oils is also an option, but it requires techniques like Pickering emulsion or encapsulation to maintain product quality. These strategies aim to reduce or replace synthetic additives and ingredients that can potentially harm health. Dietary fiber offers numerous health benefits, including gut health improvement, calorie reduction, and blood glucose and lipid level regulation. Natural plant extracts not only enhance oxidative stability but also reduce potential carcinogens as antioxidants. Controlling protein and lipid bioavailability is also considered, especially for specific consumer groups like infants, the elderly, and individuals engaged in physical training with dietary management. Future research should explore the full potential of dietary fiber, encompassing synthetic additive substitution, salt and animal fat reduction, and nutritional enhancement. Additionally, optimal sources and dosages of polysaccharides should be determined, considering their distinct properties in interactions with water, proteins, and fats. This holistic approach holds promise for improving meat product quality with minimal processing.

Antioxidant Activities of Solvent Extracts from Pomegranate Endocarp (석류 내피 용매별 추출물의 항산화 활성)

  • Jin, So-Yeon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.12
    • /
    • pp.1635-1641
    • /
    • 2011
  • This study was designed to investigate antioxidant activities of pomegranate endocarp extracts. Pomegranate endocarp extract contains the highest antioxidant function compared to pomegranate extracts from other parts. Pomegranate endocarp extract was fractionated with hexane, dichloromethane, ethyl acetate, butanol extract, and water, followed by evaluation for antioxidant activity. During this experiment, various antioxidant tests such as nitrite scavenging activity, reducing power, superoxide anion scavenging activity, $ABTS^+$ scavenging activity, SOD like-activity, and DPPH radical scavenging activity were conducted on the $CH_2Cl_2$, EtOAc, BuOH, $H_2O$ fractions of pomegranate endocarp extract. Results showed that the ethyl acetate fraction contained the highest DPPH radical scavenging activity among the samples. For SOD like-activity, the dichloromethane fraction had the highest antioxidant activity. For superoxide anion scavenging activity, the ethyl acetate fraction had the highest antioxidant activity. In the $ABTS^+$ scavenging activity test, the ethyl acetate fraction $IC_{50}$ was 39.26 ${\mu}g$/mL, whereas that of the butanol fraction was 40.95 ${\mu}g$/mL. In testing reduction power at 0.1 mg/mL, the O.D. of the ethyl acetate fraction was highest at 1.404 and showed higher activity than ascorbic acid at 1.332. The results of the nitrite scavenging activity test were very similar to those of the SOD like-activity test. These results suggest that pomegranate endocarp extract may have value as a natural antioxidant.

Diallyl Disulfide Prevents Cyclophosphamide-Induced Hemorrhagic Cystitis in Rats through the Inhibition of Oxidative Damage, MAPKs, and NF-κB Pathways

  • Kim, Sung Hwan;Lee, In Chul;Ko, Je Won;Moon, Changjong;Kim, Sung Ho;Shin, In Sik;Seo, Young Won;Kim, Hyoung Chin;Kim, Jong Choon
    • Biomolecules & Therapeutics
    • /
    • v.23 no.2
    • /
    • pp.180-188
    • /
    • 2015
  • This study investigated the possible effects and molecular mechanisms of diallyl disulfide (DADS) against cyclophosphamide (CP)-induced hemorrhagic cystitis (HC) in rats. Inflammation response was assessed by histopathology and serum cytokines levels. We determined the protein expressions of nuclear transcription factor kappa-B (NF-${\kappa}B$), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), oxidative stress, urinary nitrite-nitrate, malondialdehyde (MDA), and 8-hydroxy-2'-deoxyguanosine (8-OHdG). Finally, we studied the involvement of mitogen-activated protein kinases (MAPKs) signaling in the protective effects of DADS against CP-induced HC. CP treatment caused a HC which was evidenced by an increase in histopathological changes, proinflammatory cytokines levels, urinary nitrite-nitrate level, and the protein expression of NF-${\kappa}B$, COX-2, iNOS, TNF-${\alpha}$, p-c-Jun N-terminal kinase (JNK), and p-extracellular signal regulated kinase (ERK). The significant decreases in glutathione content and glutathione-S-transferase and glutathione reductase activities, and the significant increase in MDA content and urinary MDA and 8-OHdG levels indicated that CP-induced bladder injury was mediated through oxidative DNA damage. In contrast, DADS pretreatment attenuated CP-induced HC, including histopathological lesion, serum cytokines levels, oxidative damage, and urinary oxidative DNA damage. DADS also caused significantly decreased the protein expressions of NF-${\kappa}B$, COX-2, iNOS, TNF-${\alpha}$, p-JNK, and p-ERK. These results indicate that DADS prevents CP-induced HC and that the protective effects of DADS may be due to its ability to regulate proinflammatory cytokines production by inhibition of NF-${\kappa}B$ and MAPKs expressions, and its potent anti-oxidative capability through reduction of oxidative DNA damage in the bladder.

Evaluation of Natural Attenuation by Addition of Fumarate as Carbon Source and Gene Analysis in Groundwater Sample (지하수 중 탄소원으로 fumarate 주입과 유전자분석을 통한 질산성질소 자연저감도 평가)

  • Park, Sunhwa;Kim, Hyun-Gu;Kim, Sohyun;Lee, Min-Kyeong;Lee, Gyeong-Mi;Kim, Young;Kim, Moon-Su;Kim, Taeseung
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.4
    • /
    • pp.62-69
    • /
    • 2014
  • In the results of monitoring nitrate concentration in more than 8,000 groundwater wells around agro-livestock, the average and maximum nitrate concentration was 9.4 mg/L and 101.2 mg/L, respectively. Since about 31% of the monitoring wells was exceed the quality standard for drinking water, nitrate control such as remediation or source regulation is required to conserve safe-groundwater in South Korea. Typical nitrate-treatment technologies include ion exchange, reverse osmosis, and biological denitrification. Among the treatment methods, biological denitrification by indigenous microorganism has environmental and economic advantages for the complete elimination of nitrate because of lower operating costs compared to other methods. Major mechanism of the process is microbial reduction of nitrate to nitrite and nitrogen gas. Three functional genes (nosZ, nirK, nirS) that encode for the enzyme involved in the pathway. In this work, we tried to develop simple process to determine possibility of natural denitrification reaction by monitoring the functional gene. For the work, the functional genes in nitrate-contaminated groundwater were monitored by using PCR with specific target primers. In the result, functional genes (nosZ and nirK) encoding denitrification enzymes were detected in the groundwater samples. This method can help to determine the possibility of natural-nitrate degradation in target groundwater wells without multiplex experimental process. In addition, for field-remediation application we selected nitrate-contaminated site where 200~600 mg/L of nitrate is continuously detected. To determine the possibility of nitrate-degradation by stimulated-natural attenuation, groundwater was sampled in two different wells of the site and nitrate concentration of the samples was 300 mg/L and 616 mg/L, respectively. Fumarate for different C/N ratio was added into microcosm bottles containing the groundwater to examine denitrification rate depending on carbon concentration. In the result, once 1.5 times more than amount of fumarate stoichiometry required was added, the 616 mg/L of nitrate and 300 mg/L of nitrate were completely degraded in 8 days and 30 days. The nitrite, byproduct of denitrification process, was also completely degraded during the experimental period.

Complete genome sequence of Marinobacter salarius HL2708#2 isolated from a lava sea water environment on Jeju Island (제주용암 해수 환경에서 분리한 Marinobacter salarius HL2708#2의 유전체 해독)

  • Oh, Hyun-Myung;Kim, Dae-Hyun;Han, Seong-Jeong;Song, Jong-Ho;Kim, Kukhyun;Jang, Dongil
    • Korean Journal of Microbiology
    • /
    • v.55 no.1
    • /
    • pp.69-73
    • /
    • 2019
  • During screening of microbes for compounds having cosmetic benefits, we isolated Marinobacter salarius HL2708#2 from lava seawater on Jeju Island, Republic of Korea. The complete genome sequence was determined. Strain HL27080#2 features a circular chromosome of 4,304,603 bp with 57.21% G+C content and a 244,163 bp plasmid with 53.14% G+C. There were 4,180 protein coding sequences identified, along with 49 transfer RNA and 18 ribosomal RNA noncoding genes. The genome harbored genes for the utilization of alcohol, maltose/starch, and monosaccharide as sole carbon sources. Genes responsible for halophilic characteristics and heavy metal resistance could be annotated, as well as aromatic and alkane hydrocarbons. Contrary to the prior report that M. salarius is negative for nitrate and nitrite reduction, nitrate/nitrite reductase along with nitrate/nitrate transporters and nitronate monooxygenase were evident, suggesting that strain HL2708#2 may be able to denitrify extracellular nitroalkenes to ammonia.

Electrochemical Reduction for trans-Complexes of Cobalt (III) with Bis(ethylenediamine) and Monodendate Ligands (한자리 리간드를 포함하는 트란스비스 (에틸렌디아민) 코발트 (III) 이온의 전극 환원반응)

  • Jung-Ui Hwang;Jong-Jae Chung;Jae-Duck Lee
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.215-224
    • /
    • 1989
  • Electrochemical reductions of $trans-[Co(en)_2X_2](ClO_4)_n$ (where X is cyanide, nitrite, ammonia, and isothiocyanate) were investigated by cyclic voltammetry and polarography at mercury and glassy carbon electrode. $trans-[Co(en)_2(CN)_2]ClO_4$ was reduced to Co(II) complex followed by adsorption to the mercury electrode. Cyanide ion was not released from the reduced Co(II) complex but the cyanide and (en) were released after the reduction to metallic cobalt. The other complexes except $trans-[Co(en)_2(CN)_2]ClO_4$ were reduced to cobalt(II) complexes followed by release of monodendate ligand, and (en) was released at the reduction step to metallic cobalt. $trans-[Co(en)_2(NO_2)_2]ClO_4$ was reduced to cobalt(Ⅱ) complex, and $NO_2^-$ ion was released followed by electroreduction through ECE mechanism at pH 2. On glassy carbon electrode, all complexes of Co(III) were reduced to Co(II) complexes with irreversible one-electron diffusion controlled reaction in which (en) was not released at this step. Increasing absorption wave number of complexes caused to negative shift of peak potential.

  • PDF

Biodegradation of Polynuclear Aromatic Hydrocarbons in soil using microorganisms under anaerobic conditions (혐기성 미생물에 의한 토양내 다핵성방향족화합물의 생물학적 분해)

  • An, Ik-Seong
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.89-91
    • /
    • 2000
  • Polynuclear aromatic hydrocarbon (PAH) compounds are highly carcinogenic chemicals and common groundwater contaminants that are observed to persist in soils. The adherence and slow release of PAHs in soil is an obstacle to remediation and complicates the assessment of cleanup standards and risks. Biological degradation of PAHs in soil has been an area of active research because biological treatment may be less costly than conventional pumping technologies or excavation and thermal treatment. Biological degradation also offers the advantage to transform PAHs into non-toxic products such as biomass and carbon dioxide. Ample evidence exists for aerobic biodegradation of PAHs and many bacteria capable of degrading PAHs have been isolated and characterized. However, the microbial degradation of PAHs in sediments is impaired due to the anaerobic conditions that result from the typically high oxygen demand of the organic material present in the soil, the low solubility of oxygen in water, and the slow mass transfer of oxygen from overlying water to the soil environment. For these reasons, anaerobic microbial degradation technologies could help alleviate sediment PAH contamination and offer significant advantages for cost-efficient in-situ treatment. But very little is known about the potential for anaerobic degradation of PAHs in field soils. The objectives of this research were to assess: (1) the potential for biodegradation of PAH in field aged soils under denitrification conditions, (2) to assess the potential for biodegradation of naphthalene in soil microcosms under denitrifying conditions, and (3) to assess for the existence of microorganisms in field sediments capable of degrading naphthalene via denitrification. Two kinds of soils were used in this research: Harbor Point sediment (HPS-2) and Milwaukee Harbor sediment (MHS). Results presented in this seminar indicate possible degradation of PAHs in soil under denitrifying conditions. During the two months of anaerobic degradation, total PAH removal was modest probably due to both the low availability of the PAHs and competition with other more easily degradable sources of carbon in the sediments. For both Harbor Point sediment (HPS-2) and Milwaukee Harbor sediment (MHS), PAH reduction was confined to 3- and 4-ring PAHs. Comparing PAH reductions during two months of aerobic and anaerobic biotreatment of MHS, it was found that extent of PAHreduction for anaerobic treatment was compatible with that for aerobic treatment. Interestingly, removal of PAHs from sediment particle classes (by size and density) followed similar trends for aerobic and anaerobic treatment of MHS. The majority of the PAHs removed during biotreatment came from the clay/silt fraction. In an earlier study it was shown that PAHs associated with the clay/silt fraction in MHS were more available than PAHs associated with coal-derived fraction. Therefore, although total PAH reductions were small, the removal of PAHs from the more easily available sediment fraction (clay/silt) may result in a significant environmental benefit owing to a reduction in total PAH bioavailability. By using naphthalene as a model PAH compound, biodegradation of naphthalene under denitrifying condition was assessed in microcosms containing MHS. Naphthalene spiked into MHS was degraded below detection limit within 20 days with the accompanying reduction of nitrate. With repeated addition of naphthalene and nitrate, naphthalene degradation under nitrate reducing conditions was stable over one month. Nitrite, one of the intermediates of denitrification was detected during the incubation. Also the denitrification activity of the enrichment culture from MHS slurries was verified by monitoring the production of nitrogen gas in solid fluorescence denitrification medium. Microorganisms capable of degrading naphthalene via denitrification were isolated from this enrichment culture.

  • PDF