• 제목/요약/키워드: Nitrifying microorganisms

검색결과 13건 처리시간 0.018초

양식 수처리를 위한 생물막 공정에서 질산화 영향인자에 대한 고찰 (A Study of Nitrification Kinetics in the Biofilter Process for Aquaculture Water Treatment: A Review)

  • 박노백;박미선;이진환;명정인
    • 한국수산과학회지
    • /
    • 제46권6호
    • /
    • pp.675-681
    • /
    • 2013
  • There have been many studies on biofilter process regarding satisfactory water quality and the operational conditions of Recirculating Aquaculture Systems (RAS). For effective nitrification processes, it is necessary to dynamically identify and apply nitrifying microorganisms. Physical, chemical and biological processes concerning biofilms can be applied and influential factors including substrate, dissolved oxygen concentrations, organic matter, temperature, pH, alkalinity, salinity and mixing velocity intensity need to be considered. Also, designing and managing the process based on the dynamic interpretation of these factors are prerequisites for engineering applications of the biofilter process. This paper draws on current literature on the kinetics of nitrification of biofilms in the biofilter process. Influential factors for nitrification are crucial during the biofilter process and are expected to be critical in informing the design and operation of recirculating aquaculture systems.

Enzyme Immobilized Reactor Design for Ammonia Removal from Waste Water

  • Song, Ju-Yeong;Chung, Soo-Bae
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제2권2호
    • /
    • pp.77-81
    • /
    • 1997
  • Removal of nitrogen compound from waste water is essential and often accomplished by biological process. To prevent washout and to develop an efficient bioreactor, immobilization of sutibal microorganisms could be sensible approach. Strains and permeabilized cell encapsulated in cellulose nitrate microcapsules and immobilized on polystyrene films were prepared by the method described in the previous study. In the wastewater treatment system, nitrification of ammonia component is generally known as rate controlling step. To enhance the rate of nitrification, firstly nitrifying strains Nitrosomonas europaea(IFO14298), are permeabilized chemically, and immobilized on polystyrene films and secondly oxidation rates of strain system and permeabilized strain system are compared in the same condition. with 30 minute permeabilized cells, it took about 25 hours to oxidize 70% of ammonia in the solution, while it took about 40 hours to treat same amount of ammonia with untreated cells. All the immobilization procedures did not harm to the enzyme activity and no mass transfer resistance through the capsule well was shown. In the durability test of immobilized system, the system showed considerable activity for the repeated operation for 90 days. With these results, the system developed in this study showed the possibility to be used in the actual waste water treatment system.

  • PDF

암모니아 센서를 이용한 간헐폭기 Membrane bioreactor공정에서의 전력비 저감과 관형막을 이용한 슬러지 농축에 관한 연구 (A study on an intermittent aeration membrane bioreactor system using ammonia sensor to decrease energy consumption and sludge concentration by tubular membrane)

  • 강희석;이의종;김형수;장암
    • 상하수도학회지
    • /
    • 제28권2호
    • /
    • pp.161-170
    • /
    • 2014
  • It is essential to decrease energy consumption and excess sludge to economically operate sewage treatment plant. This becomes more important along with a ban on sea dumping and exhaustion of resource. Therefore, many researchers have been study on energy consumption reduction and strategies for minimization of excess sludge production from the activated sludge process. The aeration cost account for a high proportion of maintenance cost because sufficient air is necessary to keep nitrifying bacteria activity of which the oxygen affinity is inferior to that of heterotrophic bacteria. Also, additional costs are incurred to stabilize excess sludge and decrease the volume of sludge. There were anoxic, aerobic, membrane, deairation and concentration zone in this MBR process. Continuous aeration was provided to prevent membrane fouling in membrane zone and intermittent aeration was provided in aerobic zone through ammonia sensor. So, there was the minimum oxygen to remove $NH_4-N$ below limited quantity that could be eliminated in membrane zone. As the result of this control, energy consumption of aeration system declined by between 10.4 % and 19.1 %. Besides, we could maintain high MLSS concentration in concentration zone and this induced the microorganisms to be in starved condition. Consequentially, the amount of excess sludge decrease by about 15 %.