• Title/Summary/Keyword: Nitric oxide inhibitor

Search Result 442, Processing Time 0.037 seconds

Coupling Efficiencies of m1, m3 and m5 Muscarinic Receptors to the Stimulation of Neuronal Nitric Oxide Synthase

  • Park, Sun-Hye;Lee, Seok-Yong;Cho, Tai-Soon
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.207-207
    • /
    • 1996
  • Through molecular cloning, five muscarinic receptors have been identified. The muscarinic receptors can be generally grouped according to their coupling to either stimulation of phospholipase C (m1, m3, and m5) or the inhibition of adenylate cyclase (m2 and m4). Each m1, m3, and m5 receptors has the additional potential to couple to the activation of phospholipase A$_2$, C, and D, tyrosine kinase, and the mobilization of Ca$\^$2+/. However, the differences in coupling efficiencies to different second messenger systems between these receptors have not been studied well. Ectopic expression of each of these receptors in mammalian cells has provided the opportunity to evaluate the signal transduction of each in some detail. In this work we compared the coupling efficiencies of the m1, m3 and m5 muscarinic receptors expressed in chinese hamster ovary (CHO) cells to the Ca$\^$2+/ mobilization and the stimulation of neuronal nitric oxide synthase (nNOS). Because G protein/PLC/PI turnover/[(Ca$\^$2+/])i/NOS pathway was supposed as a main pathway for the production of nitric oxide via muscarinic receptors, we studied on ml, m3 and m5 receptors. Stimulation of guanylate cyclase activity in detector neuroblastoma cells was used as an index of generation nitric oxide (NO) in CHO cells. The agonist carbachol increased the cGMP formation and the intracellular [Ca$\^$2+/] in concentration dependent manner in three types of receptors and the increased cGMP formation was significantly attenuated by scavenger of NO or inhibitor of NOS. m5 receptors was most efficiently coupled to stimulation of nNOS, And, the coupling efficiencies to the stimulation of neuronal nitric oxide synthase in three types of receptors were parallel with them to the Ca$\^$2+/ mobilization.

  • PDF

Studies on the Regulation of Nitric oxide Synthesis in Murine Mononuclear Phagocytes (마우스 단핵 탐식 세포에서 Nitric oxide 생성의 조절 기전에 관한 연구)

  • 최병기;김수응
    • Environmental Analysis Health and Toxicology
    • /
    • v.15 no.3
    • /
    • pp.69-80
    • /
    • 2000
  • ADP-rubosylation may be involved in the process of macrophage activation. Nitric oxide (NO) has emerged as an important intracellular and interacellular regulatory molecule with function as diverse as vasodilation, neural communication or host defense. NO is derived from the oxidation of the terminal guanidino nitrogen atom of L-arginine by the NADPH -dependent enzyme, nitric oxide synthase (NOS) which is one of the three different isomers in mammalian tissues. Since NO can exert protective or regulatory functions in the cell at a low concentration while toxic effects at higher concentrations, its role may be tightly regulated in the cell. Therefore, this paper was focused on signal transduction pathway of NO synthesis, role of endogenous TGF-$\beta$ in NO production. effect of NO on superoxide formation. Costimulation of murine peritoneal macrophages with interferon-gamma (IFN-γ) and phorbol 12-myristate 13-acetate (PMA) increased both NO secretion and mRNA expression of inducible nitric oxide synthase (iNOS) when PMA abolished costimulation. Pretreatmnet of the cells with PMA abolished costimuation effects due to the depletion of protein kinase C (PKC) activities . The involvement of PKC in NO secretion could be further confirmed by PKC inhibitor, stauroprine, and phorbol ester derivative, phorbol 12,13-didecanoate. Addition of actinomycine D in IFN-γ plus PMA stimulated cells inhibited both NO secretion and mRNA expression of iNOS indication that PMA stabilizes mRNA of iNOS . Exogenous TGF-$\beta$ reduced NO secretion in IFN -γ stimulated murine macrophages. However addition of antisense oligodeoxynucleotide (ODN) to TGF-$\beta$ to this system recovered the ability of NO production and inhibited mRNA expression of TGF-$\beta$. ACAS interactive laser cytometry analysis showed that transportation of FITC -labeled antisense ODN complementary to TGF-$\beta$ mRNA could be observed within 5 min and reached maximal intensity in 30 min in the murine macrophage cells. NO released by activated macrophages inhibits superoxide formation in the same cells . This inhibition nay be related on NO-induced auto -adenosine diphosphate (ADP) -ribosylation . In addition, ADP-ribosylation may be involved in the process of macrophage activation .

  • PDF

Ginsenoside $R_e$ Increases Fertile and Asthenozoospermic Infertile Human Sperm Motility by Induction of Nitric Oxide Synthase

  • Zhang Hong;Zhou Qing-Ming;Li Xiao-Da;Xie Yi;Duan Xin;Min Feng-Ling;Liu Bing;Yuan Zhi-Gang
    • Archives of Pharmacal Research
    • /
    • v.29 no.2
    • /
    • pp.145-151
    • /
    • 2006
  • We investigated the effects of Ginsenoside $R_e$ on human sperm motility in fertile and asthenozoospermic infertile individuals in vitro and the mechanism by which the Ginsenosides play their roles. The semen samples were obtained from 10 fertile volunteers and 10 asthenozoospermic infertile patients. Spermatozoa were separated by Percoll and incubated with 0, 1, 10 or $100\;{\mu}M$ of Ginsenoside $R_e$. Total sperm motility and progressive motility were measured by computer-aided sperm analyzer (CASA). Nitric oxide synthase (NOS) activity was determined by the $^{3}H$-arginine to $^{3}H$-citrulline conversion assay, and the NOS protein was examined by the Western blot analysis. The production of sperm nitric oxide (NO) was detected using the Griess reaction. The results showed that Ginsenoside $R_e$ significantly enhanced both fertile and infertile sperm motility, NOS activity and NO production in a concentration-dependent manner. Sodium nitroprusside (SNP, 100 nM), a NO donor, mimicked the effects of Ginsenoside $R_e$. And pretreatment with a NOS inhibitor $N^{w}$-Nitro-L-arginine methyl ester (L-NAME, $100\;{\mu}M$) or a NO scavenger N-Acetyl-L-cysteine (LNAC, 1 mM) completely blocked the effects of Ginsenoside $R_e$. Data suggested that Ginsenoside $R_e$ is beneficial to sperm motility, and that induction of NOS to increase NO production may be involved in this benefit.

Inhibition of Nitric Oxide Production by Ethyl Digallates Isolated from Galla Rhois in RAW 264.7 Macrophages

  • Park, Pil-Hoon;Hur, Jin;Lee, Dong-Sung;Kim, Youn-Chul;Jeong, Gil-Saeng;Sohn, Dong-Hwan
    • Biomolecules & Therapeutics
    • /
    • v.19 no.4
    • /
    • pp.419-424
    • /
    • 2011
  • Galla Rhois and its components are known to possess anti-infl ammatory properties. In the present study, we prepared equilibrium mixture of ethyl m-digallate and ethyl p-digallate isomers (EDG) from Galla Rhois and examined its effect on nitric oxide (NO) production in murine macrophage cell line. Treatment of RAW264.7 macrophages with EDG signifi cantly inhibited NO production and inducible nitric oxide synthase (iNOS) expression stimulated by LPS, as assessed by Western blot and quantitative RT-PCR analyses. We also demonstrated that EDG treatment led to an increase in heme oxygenase-1 (HO-1) mRNA and protein expression. EDG treatment also enhanced expression level of nuclear factor-erythroid 2-related factor 2 (Nrf2) in nucleus, which is critical for transcriptional induction of HO-1. Treatment with SnPP (tin protoporphyrin IX), a selective HO-1 inhibitor, reversed EDG-mediated inhibition of nitrite production, suggesting that HO-1 plays an important role in the suppression of NO production by EDG. Taken together, these results indicate that EDG isolated from Galla Rhois suppresses LPS-stimulated NO production in RAW 264.7 macrophages via HO-1 induction.

Changes in Cerebral Blood flow Following Fermented Garlic Extract Solution with High Content of Nitrite (흰쥐에서 고용량 아질산이온 함유 마늘 발효농축액에 의한 뇌혈류 변화)

  • Yu, Hyeok;Rong, Zhang Xiao;Koo, Ho;Chun, Hyun Soo;Yoo, Su Jin;Kim, Min Sun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.34 no.6
    • /
    • pp.326-333
    • /
    • 2020
  • Nitrate-nitrite-nitric oxide (NO) pathway is a major alternative source of NO and is essential for NO - dependent physiological functions in body. Food supplements having nitrate/nitrite can improve metabolic syndromes including hypertension through antioxidant activity or vasodilation. The purpose of this study was to observe the effects of fermented garlic (F. garlic) having high concentration of NO2- on changes in blood flow and nitric oxide synthesis in the cerebral cortex of rodents. The generation of nitric oxide detected by a chemi-luminescence detector was higher in F. Garlic compared with NaNO2 solution under artificial gastric juice with pH 2.0. Ether F. garlic or NaNO2 diluted with artificial cerebrospinal fluid was directly applied into around the needle probe of laser Doppler flow meter that was located on epidural surface of the cortex. Direct application of F. garlic resulted in increase of cerebral blood flow detected by a laser Doppler flow meter with a dose-dependent manner. Compared with NaNO2 solution, F. garlic produced changes in cerebral blood flow at lower concentration of NO2-. Pretreatment of methylene blue, a guanylyl cyclase inhibitor prevented upregulation of cerebral blood flow by the treatment of F. garlic. In addition, the application of F. garlic with 250, 500ppm of NO2- caused significantly the production of NO in the cortical tissue but NaNO2 solution with 500ppm of NO2- did not. In summary, these results suggested that F. garlic with high content of NO2- induce increase in cerebral blood flow through nitric oxide-dependent signal pathway.

Effect of Cyclooxygenase-2 Specific Inhibitor (SC-58635) on the Production of Nitric Oxide and Prostaglandin E2 in Lipopolysaccharide-stimulated Macrophage Cells (Cyclooxygenase-2 Specific Inhibitor (SC-58635)가 Lipopolysaccharide로 자극한 대식세포에서 Nitric Oxide와 Prostaglandin E2 생산에 미치는 영향)

  • Hong, Seung-Jae;Yang, Hyung-In;Yoon, Hwi-Joong;Lee, Myoung-Soo;Kang, Hyo-Jong;Kim, Wan-Uk;Lee, Sang-Heon;Cho, Chul-Soo;Kim, Ho-Youn
    • IMMUNE NETWORK
    • /
    • v.3 no.1
    • /
    • pp.69-77
    • /
    • 2003
  • Background: Celecoxib, a COX-2 specific inhibitor, has recently been used for the treatment of rheumatoid arthritis. However, the molecular and cellular mechanisms of celecoxib against RA inflammation remain to be defined. To elucidate the action mechanism of celecoxib on inflammatory cells, we investigated the effect of celecoxib on the production of two important mediators of inflammation, nitric oxide and PGE2 Methods: RAW 264.7 cells stimulated with LPS were preincubated with various concentrations of celecoxib (from $10^{-8}$ to $10^{-5}$ M) and $10{\mu}M$ hydrocortisone, respectively. The production of NO and PGE2, the end products of iNOS and COX-2 genes, were estimated in culture supernatants by Greiss method and EIA, respectively. The expression of iNOS gene, COX-2 gene, $NF-{\kappa}B$, and $I-{\kappa}B$ were determined by RT-PCR and western blot analysis. Results: Celecoxib and hydrocortisone inhibited the production of NO and PGE2 in dose dependent manner, when RAW 264.7 cells were stimulated with LPS. The expression of iNOS was also down-regulated by celecoxib and hydrocortisone. Interestingly, COX-2 gene differentially expressed according to the dose of celecoxib, a decrease with lower dose ($10^{-8}$ M) but an increase with higher dose ($10^{-5}$ M). $NF-{\kappa}B$ binding activity was decreased by lower dose of celecoxib, whereas was not affected by higher dose of it. The expression of $I-{\kappa}B$ was suppressed by higher dose of celecoxib. Conclusion: The celecoxib strongly suppressed the production of NO and PGE2 in LPS-stimulated RAW264.7 cells. The decrease of NO seems to be linked to the inhibition of iNOS by celecoxib. The lower and higher dose of celecoxib differentially regulated the COX-2 expression and $NF-{\kappa}B$ activity.

Effect of $N^G$-nitro-L-arginine methyl ester and Methylene Blue on the Endotoxin-induced Vascular Hyporesponsiveness (세균 내독소 유발 혈관 저반응성에 대한 $N^G$-nitro-L-arginine methyl ester와 Methylene blue의 영향)

  • Choi, Hyoung-Chul;Ha, Jeoung-Hee;Lee, Kwang-Youn;Kim, Won-Joon;Sohn, Uy-Dong
    • Journal of Yeungnam Medical Science
    • /
    • v.14 no.2
    • /
    • pp.337-349
    • /
    • 1997
  • This study was undertaken to examine the intensity of involvement of inducible nitric oxide synthase (iNOS) and cyclic GMP signal transduction pathway as one of the mechanisms of vaso-relaxative action of bacterial lipopolysaccharide (LPS) on the canine femoral artery strips. Canine femoral arteries were isolated and spiral strips of 10 mm long and 2 mm wide were made in the Tyrode solution of $0-4^{\circ}C$. The strips were prepared for isometric myography in Biancani's isolated muscle chamber containing 1 ml of Tyrode solution, which was maintained with pH 7.4 by aeration with 95% $O_2$/5% $CO_2$ at $37^{\circ}C$ and nitric oxide (NO) production was measured simulltaneously with isolated nitric oxide meter. LPS induced NO production, suppressed the phenylephrine (PE) induced contraction and enhanced the acetylcholine (ACh) induced relaxation. $N^G$-nitro-L-arginine methyl ester (L-NAME), an NOS inhibitor, methylene blue, a guanylyl cyclase inhibitor, potentiated PE induced contraction and suppressed ACh induced relaxation on the LPS treated strips. The inhibitory potency of methylene blue for LPS induced vascular hyporesponsiveness was stronger than that of L-NAME. These results suggest that in canine femoral artery, both iNOS and cyclic GMP signal trnasduction pathway are related with LPS induced vascular hyporeponsiveness, but in minor with iNOS and in major with cyclic GMP signal trnasduction pathway.

  • PDF

Arsenite Acutely Decreases Nitric Oxide Production via the ROS-Protein Phosphatase 1-Endothelial Nitric Oxide Synthase-Thr497 Signaling Cascade

  • Seo, Jungwon;Lee, Jee Young;Sung, Min-Sun;Byun, Catherine Jeonghae;Cho, Du-Hyong;Lee, Hyeon-Ju;Park, Jung-Hyun;Cho, Ho-Seong;Cho, Sung-Jin;Jo, Inho
    • Biomolecules & Therapeutics
    • /
    • v.22 no.6
    • /
    • pp.510-518
    • /
    • 2014
  • Chronic (>24 h) exposure of arsenite, an environmental toxicant, has shown the decreased nitric oxide (NO) production in endothelial cells (EC) by decreasing endothelial NO synthase (eNOS) expression and/or its phosphorylation at serine 1179 ($eNOS-Ser^{1179}$ in bovine sequence), which is associated with increased risk of vascular diseases. Here, we investigated the acute (<24 h) effect of arsenite on NO production using bovine aortic EC (BAEC). Arsenite acutely increased the phosphorylation of $eNOS-Thr^{497}$, but not of $eNOS-Ser^{116}$ or $eNOS-Ser^{1179}$, which was accompanied by decreased NO production. The level of eNOS expression was unaltered under this condition. Treatment with arsenite also induced reactive oxygen species (ROS) production, and pretreatment with a ROS scavenger N-acetyl-L-cysteine (NAC) completely reversed the observed effect of arsenite on $eNOS-Thr^{497}$ phosphorylation. Although protein kinase C (PKC) and protein phosphatase 1 (PP1) were reported to be involved in $eNOS-Thr^{497}$ phosphorylation, treatment with PKC inhibitor, Ro318425, and overexpression of various PKC isoforms did not affect the arsenite-stimulated $eNOS-Thr^{497}$ phosphorylation. In contrast, treatment with PP1 inhibitor, calyculin A, mimicked the observed effect of arsenite on $eNOS-Thr^{497}$ phosphorylation. Lastly, we found decreased cellular PP1 activity in arsenite-treated cells, which was reversed by NAC. Overall, our study demonstrates firstly that arsenite acutely decreases NO production at least in part by increasing $eNOS-Thr^{497}$ phosphorylation via ROS-PP1 signaling pathway, which provide the molecular mechanism underlying arsenite-induced increase in vascular disease.