• Title/Summary/Keyword: Nitrate-selective

Search Result 89, Processing Time 0.026 seconds

Disposable Nitrate-Selective Optical Sensor Based on Fluorescent Dye

  • Kim, Gi-Young;Sudduth, Kenneth A.;Grant, Sheila A.;Kitchen, Newell R.
    • Journal of Biosystems Engineering
    • /
    • v.37 no.3
    • /
    • pp.209-213
    • /
    • 2012
  • Purpose: This study was performed to develop a simple, disposable thin-film optical nitrate sensor. Methods: The sensor was fabricated by applying a nitrate-selective polymer membrane on the surface of a thin polyester film. The membrane was composed of polyvinylchloride (PVC), plasticizer, fluorescent dye, and nitrate-selective ionophore. Fluorescence intensity of the sensor increased on contact with a nitrate solution. The fluorescence response of the optical nitrate sensor was measured with a commercial fluorospectrometer. Results: The optical sensor exhibited linear response over four concentration decades. Conclusions: Nitrate ion concentrations in plant nutrient solutions can be determined by direct optical measurements without any conditioning before measurements.

Comparison of Selective Removal of Nitrate Ion in Constant Voltage and Constant Current Operation in Capacitive Deionization (축전식 탈염에서 정전압과 정전류 운전에 따른 질산 이온의 선택적 제거율 비교)

  • Choi, Jae-Hwan;Kim, Hyun-Ki
    • Korean Chemical Engineering Research
    • /
    • v.53 no.3
    • /
    • pp.269-275
    • /
    • 2015
  • The adsorption characteristics of ions were evaluated for the nitrate-selective carbon electrode (NSCE) in accordance with power supply methods. The NSCE was fabricated by coating the surface of a carbon electrode with anion-exchange resin powders with high selectivity for the nitrate ion. Capacitive deionization (CDI) experiments were performed on a mixed solution of nitrate and chloride ion in constant voltage (CV) and constant current (CC) modes. The number of total adsorbed ions in CV mode was 15% greater than that in CC mode. The mole fraction of adsorbed nitrate ion showed the maximum 58%, though the mole fraction was 26% in the mixed solution. This indicates that the fabricated NSCE is highly effective for the selective adsorption of nitrate ions. The mole fraction of adsorbed nitrate was nearly constant value of 55-58% during the adsorption period in CC mode. In the case of CV mode, however, the values increased from the initial 30% to 58% at the end of adsorption. We confirmed that the current supplied to cell is important factor to determine the selective removal of nitrate.

Determination of Nitrate in Chromium Plating Solution with Nitrate-Selective Electrodes

  • 강유라;이원;허황;차근식;남학현
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.3
    • /
    • pp.221-226
    • /
    • 1995
  • A method for determining nitrate in post treatment chromium plating solutions with PVC-based nitrate-selective electrodes is described. PVC-based nitrate-selective membranes which contain TDMANO3 ion-exchanger in PVC/NPOE, PVC/DOA or PVC/DBP matrices, and a commercially available Corning electrode (No. 476134) have been compared in respect of their detection limits, response slopes, selectivities at various pHs, and dynamic response to the hydrochromate ion in basic condition. The PVC/DBP/TDMANO3 membrane electrode was chosen as the ISE detector for the determination of nitrate in the presence of hydrochromate interference. The amount of nitrate in real post treatment chromium plating solution could be determined successfully with this electrode in both static and flow-injection measurements when the sample was properly diluted with an alkaline buffer.

Sensing Nitrate and Potassium Ions in Soil Extracts Using Ion-Selective Electrodes (이온선택성 전극을 이용한 토양추출물의 질산 및 칼륨이온 측정)

  • Kim, H.J.;Sudduth Kenneth A.;Hummel John W.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.6 s.119
    • /
    • pp.463-473
    • /
    • 2006
  • Automated sensing of soil macronutrients would allow more efficient mapping of soil nutrient spatial variability for variable-rate nutrient management. The capabilities of ion-selective electrodes for sensing macronutrients in soil extracts can be affected by the presence of other ions in the soil itself as well as by high concentrations of ions in soil extractants. Adoption of automated, on-the-go sensing of soil nutrients would be enhanced if a single extracting solution could be used for the concurrent extraction of multiple soil macronutrients. This paper reports on the ability of the Kelowna extractant to extract macronutrients (N, P, and K) from US Corn Belt soils and whether previously developed PVC-based nitrate and potassium ion-selective electrodes could determine the nitrate and potassium concentrations in soil extracts obtained using the Kelowna extractant. The extraction efficiencies of nitrate-N and phosphorus obtained with the Kelowna solution for seven US Corn Belt soils were comparable to those obtained with IM KCI and Mehlich III solutions when measured with automated ion and ICP analyzers, respectively. However, the potassium levels extracted with the Kelowna extractant were, on average, 42% less than those obtained with the Mehlich III solution. Nevertheless, it was expected that Kelowna could extract proportional amounts of potassium ion due to a strong linear relationship ($r^2$ = 0.96). Use of the PVC-based nitrate and potassium ion-selective electrodes proved to be feasible in measuring nitrate-N and potassium ions in Kelowna - soil extracts with almost 1 : 1 relationships and high coefficients of determination ($r^2$ > 0.9) between the levels of nitrate-N and potassium obtained with the ion-selective electrodes and standard analytical instruments.

Application of Ion-Selective Electrodes to Measure Ionic Concentrations of Macronutrients in Hydroponics (수경재배 시 다량 이온 농도 측정을 위한 이온 선택성 전극의 응용)

  • Kim, Min-Su;Park, Tu-San;Cho, Seong-In
    • Journal of Biosystems Engineering
    • /
    • v.32 no.1 s.120
    • /
    • pp.37-43
    • /
    • 2007
  • This study was carried out to investigate the applicability of PVC membrane-based ion-selective electrodes for macronutrients (K, Ca, and N) by measuring of potassium, calcium, nitrate ions in hydroponic nutrient solution. The capabilities of two ion-selective membranes with varying chemical compositions for each ion were evaluated in terms of sensitivity, selectivity, and lifetime to choose sensing elements suitable for measuring typical ranges of nutrient concentrations in hydroponic solutions. The selected calcium and nitrate ion-selective membranes showed effectively sensitive responses to calcium and nitrate ions with lifetimes of 25 and 15 days, respectively. The addition of a cation additive to the potassium membrane cocktail allowed its sensitivity to be increased whereas its lifetime was reduced from 30 days to 10 days.

Performance of Self-Manufactured Ion Selective Microelectrode (ISME) for Continuous Monitoring of Ammonia and Nitrate Ions

  • Byun, Im-Gyu
    • Journal of Environmental Science International
    • /
    • v.21 no.12
    • /
    • pp.1449-1454
    • /
    • 2012
  • The ion selective microelectrodes (ISME) have been applied to observe the continuous profiles of NO3-N and NH4-N in bulk solutions or biofilms. In order to evaluate the performance and applicability of ion concentration measuring system, the characteristics, such as slope of calibration curve, detection limit and potentiometric selectivity coefficient were investigated. The slopes of calibration curve showed high degree of correspondence for each target ion concentrations. And the detection limits of nitrate and ammonia ion selective microelectrode were 10-4.7 M and 10-4.4 M, respectively. These ion selective microelectrodes were proved that their own performance could be maintained for 16 days after making. NO3-N and NH4-N selective microelectrodes were also adapted to detect the continuous ion profiles of cilia media packed MLE (Modified Ludzack-Ettinger) process. And the monitored nitrate and ammonia ion profiles with the ion selective microelectrode were stable and well corresponded to the results with conventional ion chromatograph. However, the electric potential was unstable until 8 hr because of the unknown noise. The tip shape and performance of the ion selective microelectrode was stably kept over 2 days continuous monitoring.

Basic Study for Development of Denitrogenation Process by Ion Exchange(V) -Synthesis of Nitrate-Selective Ion Exchange Resines- (이온교환법에 의한 탈질소 공정개발의 기초연구(V) -질산성 질소 선택적인 이온교환수지의 합성-)

  • 이동환;김승일;전진희;박찬영;이민규
    • Journal of Environmental Science International
    • /
    • v.9 no.4
    • /
    • pp.319-323
    • /
    • 2000
  • Nitrate-selective ion exchange resin which have bulky tertiary amine as functional group have been synthesized by the reaction of chloromethylated polystyrene-divinylbenzene copolymer and the corresponding tertiary amine [$NR_3=NE_{t3} 1, N{(C_2 H_4 H_3)}_32]$in ethanol, while commercial resin has $NMe_3$ as functional group. The fundamental properties such as bulk density, water content, appearance index, exchange capacity, effective size, uniformity coefficient of synthesized anion exchange resin (1) have been measured. The ion exchange resin (1) and (2) exhibited the better selectivity for nitrate than sulfate in both batch and continuous column experiments.

  • PDF

Enhancement of Selective Removal of Nitrate Ions from a Mixture of Anions Using a Carbon Electrode Coated with Ion-exchange Resin Powder (이온교환수지 분말이 코팅된 탄소전극을 이용한 음이온 혼합용액에서 Nitrate 이온의 선택적 제거율 향상)

  • Yeo, Jin-Hee;Choi, Jae-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.24 no.1
    • /
    • pp.49-54
    • /
    • 2013
  • We fabricated a composite carbon electrode to remove nitrate ions selectively from a mixed solution of anions. The electrode was fabricated by coating the surface of a carbon electrode with the nitrate-selective anion exchange resin (BHP55, Bonlite Co.) powder. We performed capacitive deionization (CDI) experiments on a mixed solution containing chloride, nitrate, and sulfate ions using a BHP55 cell constructed with the fabricated electrode. The removal of nitrate ions in the BHP55 cell was compared to that of a membrane capacitive deionization (MCDI) cell constructed with ion exchange membranes. The total quantity of ions adsorbed in BHP55 cell was $38.3meq/m^2$, which is 31% greater than that of MCDI cell. In addition, the number of nitrate adsorption in the BHP55 cell was $15.9meq/m^2$ (42% of total adsorption), 2.1 times greater than the adsorption in the MCDI cell. The results showed that the fabricated composite carbon electrode is very effective in the selective removal of nitrate ions from a mixed solution of anions.

Nitrate Ion-Selective Membrane Electrode Based on Complex of (Bakelite-A)-(2,2'-Bipyridine)-Ni(Ⅱ) Nitrate ((Bakelite-A)-(2,2'-Bipyridine)-Ni(Ⅱ) 착물의 질산이온 선택성 막전극)

  • Doo-Soon Shin;Chung Ki-Won
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.3
    • /
    • pp.383-392
    • /
    • 1992
  • (Bakelite-A)-(2,2'-Bipyridine)-Ni(Ⅱ) Nitrate complexes were tested as ion exchanger for nitrate ion-selective electrode. The experimentally observed selectivity and electrode characteristics were relatively in good agreement with the exchanger lipophilicity in the membrane phase. Based on chemical composition, mechanisms for exchange with nitrate ion and internal electrical conduction were postulated. Analytical application to the determination of nitrate were studied.

  • PDF

Preparation of Coated-Wire Nitrate Ion Selective Electrode and its Application for Environmental Analysis (질산이온 선택성 피복선 전극의 제작 및 환경분석에의 응용)

  • 李龍根;金昌圭;朴廷泰;金京燮;黃圭子
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.1 no.1
    • /
    • pp.99-107
    • /
    • 1985
  • A coated wire ion selective electrode for nitrate (nitrate-CWE_ was constructed using epoxy resin, ion exchanger and plasticizer as a polymer membrane. It's stility, the composition of a polymer membrane, the response characteristics, the selectivity were examined and applied to the environmental analysis. The nitrate-CWE was prepared using a copper wire, wihch was coated with epoxy resin being incorporated with the nitrate ion exchanger and plasticizer. The best composition of the polymer membrane for the nitrate-CWE was obtained by mixing epoxy resin, ion exchanger and plasticizer in the ratio of 2:1:0.4. The potential (56.3$\pm$0.5 mV) of stick form nitrate-CWE in this composition was close to that (59.2 mV) of Nernstian response. The detection limit for nitrate ion were found to the about $6 \times 10^{-5}M$ and the useful pH was 2.5 $\sim$ 10.3. Furthermore, the selectivity of iodide and perchrorate for the nitrage-CWE was also much improved compared with that for a liquid membrane nitrate electrode. The nitrate-CWE was used to determind $NO_x$ in stack gas. The results were in good agreement with those obtained either by electrode method or by the improved NEDA method within a relative error of 4.0%.

  • PDF