• 제목/요약/키워드: Nitrate reducing

검색결과 140건 처리시간 0.024초

Effect of Sodium Nitrate and Nitrate Reducing Bacteria on In vitro Methane Production and Fermentation with Buffalo Rumen Liquor

  • Sakthivel, Pillanatham Civalingam;Kamra, Devki Nandan;Agarwal, Neeta;Chaudhary, Chandra
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권6호
    • /
    • pp.812-817
    • /
    • 2012
  • Nitrate can serve as a terminal electron acceptor in place of carbon dioxide and inhibit methane emission in the rumen and nitrate reducing bacteria might help enhance the reduction of nitrate/nitrite, which depends on the type of feed offered to animals. In this study the effects of three levels of sodium nitrate (0, 5, 10 mM) on fermentation of three diets varying in their wheat straw to concentrate ratio (700:300, low concentrate, LC; 500:500, medium concentrate, MC and 300:700, high concentrate, HC diet) were investigated in vitro using buffalo rumen liquor as inoculum. Nitrate reducing bacteria, isolated from the rumen of buffalo were tested as a probiotic to study if it could help in enhancing methane inhibition in vitro. Inclusion of sodium nitrate at 5 or 10 mM reduced (p<0.01) methane production (9.56, 7.93 vs. 21.76 ml/g DM; 12.20, 10.42 vs. 25.76 ml/g DM; 15.49, 12.33 vs. 26.86 ml/g DM) in LC, MC and HC diets, respectively. Inclusion of nitrate at both 5 and 10 mM also reduced (p<0.01) gas production in all the diets, but in vitro true digestibility (IVTD) of feed reduced (p<0.05) only in LC and MC diets. In the medium at 10 mM sodium nitrate level, there was 0.76 to 1.18 mM of residual nitrate and nitrite (p<0.01) also accumulated. In an attempt to eliminate residual nitrate and nitrite in the medium, the nitrate reducing bacteria were isolated from buffalo adapted to nitrate feeding and introduced individually (3 ml containing 1.2 to $2.3{\times}10^6$ cfu/ml) into in vitro incubations containing the MC diet with 10 mM sodium nitrate. Addition of live culture of NRBB 57 resulted in complete removal of nitrate and nitrite from the medium with a further reduction in methane and no effect on IVTD compared to the control treatments containing nitrate with autoclaved cultures or nitrate without any culture. The data revealed that nitrate reducing bacteria can be used as probiotic to prevent the accumulation of nitrite when sodium nitrate is used to reduce in vitro methane emissions.

혐기성 슬러지를 첨가한 오염 토양에서 저자 수용체 조건에 따른 디젤 분해 및 미생물 군집 변화

  • 이태호;최선열;박태주
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 임시총회 및 추계학술발표회
    • /
    • pp.207-210
    • /
    • 2004
  • Effect of electron accepters on anaerobic degradation of petroleum hydrocarbons by an anaerobic sludge taken from a sludge digestion tank in a soil artificially contaminated with 10,000 mg/kg soil of diesel fuel was tested. Treatments of soil with 30 mL of the digestion sludge (2,000 mg/L of vss (volatile suspended solids)) were incubated under several anaerobic conditions including nitrate reducing, sulfate reducing, methanogenic, and mixed electron accepters conditions for 120 days. Treatments with the digested sludge showed significant degradation of diesel fuel under all anaerobic conditions compare to control treatments with an autoclaved sludge and without the sludge. The amount of TPH degradation after 120days incubation was the largest in the treatment with the sludge and mixed electron accepters (75% removal of TPH) followed in order by sulfate reducing, nitrate reducing, methanegenic condition as 67%, 53%, 43%, respectively. However, the rate of TPH degradation in the nitrate- and sulfate reducing condition within 105 days were comparable with that of the mixed electron accepters condition. Microorganisms in each electron acceptor condition were plated on solid mediums containing nitrate or sulfate as sole electron acceptor and several nitrate- and sulfate reducing bacteria showed effective degradation of diesel fuel within 30 days incubations. These results suggest that anaerobic degradation of diesel fuel in soil with digested sludge is effective for practical remediation of soil contaminated with petroleum hydrocarbons.

  • PDF

Streptococcus uberis에 의한 질산염의 환원및 Dimethylnitrosamine의 생성에 관한 연구 (Studies on the Reduction of Nitrate and Formation of N-Dimethylnitrosamine by Streptococcus uberis in Human Saliva)

  • 정규찬;김종협;남경수
    • 약학회지
    • /
    • 제30권1호
    • /
    • pp.8-13
    • /
    • 1986
  • It has been assumed that nitrite, one of the precursor of N-nitrosamine, in human saliva must have been formed from salivary nitrate through the action of microorganism in the oral cavity. In this paper, we have tested the concentration of nitrite and nitrate in human saliva and the degrees of nitrate reduction by oral microflora and identified some bacteria which were able to reduce nitrate. The concentration of nitrite and nitrate was 1.7~9.5ppm and 9.0~28.5ppm respectively. The numbers of total bacteria and nitrate reducing bacteria in four korean human saliva sample were 15~63${\times}10^8$ CFU and 1.0~6.0${\times}10^8$ CFU and the main nitrate reducing bacteria were Streptococcus uberis which was presented in large quantities and showed remarkable reductive activity. Lastly, we knowed that N-dimethylnitrosamine was formed by the reaction between dimethylamine and nitrite in the presence of St. uberis in vitro.

  • PDF

Metabolic Characterization of Lactic Acid Bacterium Lactococcus garvieae sk11, Capable of Reducing Ferric Iron, Nitrate, and Fumarate

  • Yun, Su-Hee;Hwang, Tae-Sik;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권2호
    • /
    • pp.218-225
    • /
    • 2007
  • A lactic acid bacterium capable of anaerobic respiration was isolated from soil with ferric iron-containing glucose basal medium and identified as L. garvieae by using 16S rDNA sequence homology. The isolate reduced ferric iron, nitrate, and fumarate to ferrous iron, nitrite, and succinate, respectively, under anaerobic $N_2$ atmosphere. Growth of the isolate was increased about 30-39% in glucose basal medium containing nitrate and fumarate, but not in the medium containing ferric iron. Specifically, metabolic reduction of nitrate and fumarate is thought to be controlled by the specific genes fnr, encoding FNR-like protein, and nir, regulating fumarate-nitrate reductase. Reduction activity of ferric iron by the isolate was estimated physiologically, enzymologically, and electrochemically. The results obtained led us to propose that the isolate metabolized nitrate and fumarate as an electron acceptor and has specific enzymes capable of reducing ferric iron in coupling with anaerobic respiration.

질산은 처리된 실크의 환원 발색 (Cathodic Coloration of Silk Fabric Treated with Silver Nitrate)

  • 정문화;이문철
    • 한국염색가공학회지
    • /
    • 제21권2호
    • /
    • pp.14-21
    • /
    • 2009
  • In this article, silk fabric was treated with silver nitrate ($AgNO_3$) as oxidizing agent, with conditions such as concentration, and treating time, and subsequently treated with reducing agents such as sodium boron hydride ($NaBH_4$) and sodium sulfide ($Na_2S$) to obtain cathodic coloration. After coloration of silk fabric, dyeing properties (K/S value), colorfastnesses such as wash, rubbing and light, and antibacterial activity property were examined. $AgNO_3$ treating time and reducing time did not influence K/S value, whereas the pH value at alkaline region showed a high K/S value of silk fabric. The cathodic colorations of silk fabric with both of reducing agents at $30^{\circ}C$ have excellent color fastnesses. Also the high antibacterial activities were obtained by the treatment with silver nitrate even at 1% of lower concentration.

Effects of Electron Donors on Nitrate Removal by Nitrate and Nitrite Reductases

  • Yoo, Young-Je;Sung, Dong-Won;Song, Seung-Hoon;Kim, Ji-Hyeon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제7권2호
    • /
    • pp.112-116
    • /
    • 2002
  • Effects of artificial electron donors to deliver reducing power on enzymic denitrification were investigated using nitrate reductase and nitrite reductase obtained from Ochrobactrum antroyi. The activity of nitrite reductase in the soluble portion was almost the same as that in the precipitated portion of the cell extract. Nitrate removal efficiency was higher with benzyl viologen than with methyl viologen or NADH as an artificial electron donor. The turn-over numbers of nitrate and nitrite reductase were 14.1 and 1.9 umol of nitrogen reduced/min$.$mg cell extracts, respectively when benzyl viologen was used as an electron donor.

천호지 저질토에서 분리한 철환원세균의 특성 (Characterization of Fe (III)-Reducing Bacteria Isolated from the Sediment of Chunho Reservoir)

  • 안태영;박재홍;이일규;전은형
    • 미생물학회지
    • /
    • 제38권2호
    • /
    • pp.133-138
    • /
    • 2002
  • 금속 이온 환훤 세균에 의한 철(III)환원은 생물지구화학적 물질순환(biogeochemical cycle)에 무척 중요하다. 이는 크롬(Ⅵ)이나 우라늄(Ⅵ)과 같은 독성 중금속 물질의 환원과 유기물질의 산화에 모텔이 되기 때문이다. 총 37균주의 Fe (III)환원 세균을 소양호와 천호지의 저질토에서 각각 분리하였다. 두 정점 중 초기 Fe (II)의 함유량이 가장 높았던 것은 소양호의 저질토였으나 Fe (III)환훤능은 반대로 가장 낮은 Fe (II)함유량을 보여 주었던 천호지가 높게 나타났다. 또한 분리한 균주 중 천호지에서 분리한 균주 C2와 C3가 가장 높은 Fe (III) 환훤능을 보여 주었으며 이 균주를 이용하여 다양한 전자 공여체의 이용 여부를 실험하였다. Glucose, yeast extract, acetate, ethanol, toluene등을 이용하여 실험한 결과 두 균주 모두 glucose와 yeast extract만을 전자 공여체로 이용하였다. 또한 전자 수용체로 토양에 광범위하게 존재하는 humid acid와 nitrate를 이용하였으며 수율이 높은 nitrate reduction에 의해 환원되었던 humic acid가 다시 재 산화되는 것을 관촬할수 있었다. 활성능이 우수한 균주 C2와C3의 165S rRNA유전자 분석 결과에 의하면 Aeromonas hydrophila와 95%의 유사성을 보여주었다.

Growth Properties of the Iron-reducing Bacteria, Shewanella putrefaciens IR-1 and MR-1 Coupling to Reduction of Fe(III) to Fe(II)

  • Park, Doo-Hyun;Kim, Byung-Hong
    • Journal of Microbiology
    • /
    • 제39권4호
    • /
    • pp.273-278
    • /
    • 2001
  • Shewanela, putrefaciene IR-1 and MR-1 were cultivated by using various combinations electron donor-acceptor, lactate-Fe(III) lactate-nitrate, pyruvate-FE(III), pyruvate-nitrate H$_2$ acetate-Fe(III) and H$_2$-acetate-nitrate. Both strains grew fermentatively on pyruvate and lactate but not on without and electron acceptor. In culture with Fe(III), both astrains grew on pyruvate and lactate but on H$_2$-acetate- CO$_2$. In cultivation with nitrate, both stains grew on pyruvate lactage and on H$_2$-acetate-CO$_2$ The growth yields of IR-1 pyruvate, pyruvate-Fe(III) and lactate-Fe(III) were about 3.4, 3.5, and 3.6(g cell/M substrate), respectively. From the growth properties of both strains on media with Fe(III) as an electron acceptor, the bacterial growth was confirmed not to be increased by addition of Fee(III) as an electron acceptor to the growth medium, which indicates a possibility that the dissimilatory reduction of Fe(III) to Fe(III) may not be coupled to free energy production.

  • PDF

Effects of Nitrate Addition on Rumen Fermentation, Bacterial Biodiversity and Abundance

  • Zhao, Liping;Meng, Qingxiang;Ren, Liping;Liu, Wei;Zhang, Xinzhuang;Huo, Yunlong;Zhou, Zhenming
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권10호
    • /
    • pp.1433-1441
    • /
    • 2015
  • This study examined changes of rumen fermentation, ruminal bacteria biodiversity and abundance caused by nitrate addition with Ion Torrent sequencing and real-time polymerase chain reaction. Three rumen-fistulated steers were fed diets supplemented with 0%, 1%, and 2% nitrate (dry matter %) in succession. Nitrate supplementation linearly increased total volatile fatty acids and acetate concentration obviously (p = 0.02; p = 0.02; p<0.01), butyrate and isovalerate concentration numerically (p = 0.07). The alpha (p>0.05) and beta biodiversityof ruminal bacteria were not affected by nitrate. Nitrate increased typical efficient cellulolytic bacteria species (Ruminococcus flavefaciens, Ruminococcus ablus, and Fibrobacter succinogenes) (p<0.01; p = 0.06; p = 0.02). Ruminobactr, Sphaerochaeta, CF231, and BF311 genus were increased by 1% nitrate. Campylobacter fetus, Selenomonas ruminantium, and Mannheimia succiniciproducens were core nitrate reducing bacteria in steers and their abundance increased linearly along with nitrate addition level (p<0.01; p = 0.02; p = 0.04). Potential nitrate reducers in the rumen, Campylobacter genus and Cyanobacteria phyla were significantly increased by nitrate (p<0.01; p = 0.01).To the best of our knowledge, this was the first detailed view of changes in ruminal microbiota by nitrate. This finding would provide useful information on nitrate utilization and nitrate reducer exploration in the rumen.

Nitrate and Pesticide Losses Under Various Cropping Management Systems

  • Kent Mitchell, J.;Felsot, Allan;Hirschi, Michael C.;Lesikar, Bruce J.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1993년도 Proceedings of International Conference for Agricultural Machinery and Process Engineering
    • /
    • pp.1003-1012
    • /
    • 1993
  • The objective of this study was to evaluate the effectiveness of tillage and cropping management systems in reducing the movement of nitrate and pesticides in surface and sub-surface flow. Nitrate and pesticides in runoff and sub-surface tile flow have been monitored for two years from fields with various tillage and cropping management practices. Samples have also been obtained along the mainstream of the watershed. Concentrations of nitrate an pesticides differed little among specific sampling locations along the river, but they definitely followed a seasonal cycle. Nitrate concentrations from the tile drains varied considerably between fields depending upon the cropping management systems used, with concentrations varying seasonally as inthe river.

  • PDF