• Title/Summary/Keyword: Nitrate Reduction

Search Result 386, Processing Time 0.027 seconds

Study on the Extending Storage Life of Grape by Applying Edible Coating Materials (가식성 코팅물질을 이용한 포도의 저장성 연장 연구)

  • Kim, Joon-Yeol;Han, Myung-Ryun;Chang, Moon-Jeong;Kim, Byung-Yong;Kim, Myung-Hwan
    • Applied Biological Chemistry
    • /
    • v.45 no.4
    • /
    • pp.207-211
    • /
    • 2002
  • This study was conducted to increase the shelf life of grape by edible coating material such as methyl cellulose (MC) with antimicrobial substances, n-capric acid isopropyl ester (ci) and sodium nitrate (sn), added by spraying method. The quality changes of packaged grapes with wrapping PE film on EPS tray were investigated for 16 days at $30{\circ}C$. The shelf-lives of C and MCci based on the weight reduction ratio of 7% were 6 days and 9 days, respectively. The reduction rate of acidity of C was higher value than those of treatments during 18 days of storage at $30{\circ}C$. The vitamin C reduction ratios of C, MCsn and MCci were 64.8, 51.5 and 49.8%, respectively, after 16 days at $30{\circ}C$. The reduction rates of firmness of C, MCsn and MCci after 16 days at $30{\circ}C$ were 44.2, 26.5, and 23,2%, respectively compared to that of initial storage grapes. The additions of ci and sn had much affected the reductions of bacteria and yeast counts especially early stage of storage. The hedonic sensory evaluation scores of MCci and MCsn had higher values than those of MC.

Sources and Behaviors of Nitrate and Sulfate in Riverside Alluvial Aquifer

  • Choi Byoung-Young;Yun Seong-Taek;Kim Kyoung-Ho;Kim Kang-Joo
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.10a
    • /
    • pp.271-273
    • /
    • 2005
  • The ${\delta}^{15}N\;and\;{\delta}^{15}O$ data of nitrate indicates the sources of nitrate in oxic groundwater as a mixture of ammonia or urea-containing fertilizer and manure. The ${\delta}^{34}S_{sulfate}$ values indicate that sulfate Is mainly originated from fertilizers and soil S. In sub-oxic groundwater, the increased ${\delta}^{34}S_{sulfate}$ values evidently indicate that sulfate is gradually removed by microbial mediated sulfate reduction. However, iron reduction does not occur In this study area. Such a reversed redox sequence may occur In the presence of stable iron oxides such as hematite and goethite in alluvlal aquifer.

  • PDF

Biological Perchlorate Reduction in Municipal Sewage (도시하수에서 생물학적 퍼클로레이트의 환원)

  • Choi, Hyeoksun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.9
    • /
    • pp.675-680
    • /
    • 2013
  • This research was done to evaluate the potential for destruction of perchlorate in municipal sewage. Laboratory experiments were conducted in flasks containing 3 liters of raw sewage. Sewage was mixed with defined amount of perchlorate and various additives. Perchlorate reduction in sewage did occur, but was quite variable, ranging from 0 to 72% over 72 hour. Addition of even a small amount of perchlorate acclimated biomass (167 mg/L SS) significantly reduced the lag and resulted in complete perchlorate removal. Perchlorate reduction in sewage-brine mixtures was inhibited when the dissolved oxygen level was greater than 2 mg/L, and when the mixture salinity was relatively high (conductivity = 14 mS with equivalent TDS = 8 g/L). When nitrate ($NO_3{^-}$) was present with perchlorate in the laboratory flask tests of sewage-brine mixtures, nitrate reduction proceeded first. A significant amount of nitrite ($NO_2{^-}$) accumulated in the sewage-brine mixtures, accounting for about 66% of initial nitrate nitrogen ($NO_3$-N).

A STUDY ON THE REDUCTION OF GALVANIC CURRENT BETWEEN AMALGAM AND GOLD ALLOY WITH VARIOUS CHEMICAL AGENTS (수종 아말감과 금합금의 갈바닉 전류 측정에 관한 연구)

  • Kim, Seung-Soo;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.18 no.2
    • /
    • pp.469-481
    • /
    • 1993
  • The purpose of this study was to achieve the reduction of the galvanic current between the dental amalgam alloy and gold alloy. In order to measure the galvanic current between these two metals a prep in the size of $4{\times}13mm$ which was filled with amalgam and another prep of $4{\times}2mm$ was filled with gold alloy was made in the acrylic resin. These two preps were then connected to a 2mm diameter copper wire. Using an ammeter to measure the galvanic current, six different kinds of amalgam and gold alloy were immersed in saline solution with approximately 10mm distance between the two alloys. Chemical agents that are thought to reduce the galvanic current such as hydrazine. silver nitrate, potassium chromate, and bonding agents such as Scotch bond 2(3M) and All bond 2(Bisco) were applied to the alloy surface. Cathodic inhibitor such as hydrazine was applied to gold alloy where as anodic inhibitor such as silver nitrate and potassium chromate were applied to amalgam. Both bonding agents, Scotch bond 2(3M) and All bond 2 (Bisco), were applied to amalgam. The following results were obtained when the currency on the coated alloy surface was compared to the uncoated surface. 1. The galvanic currency went down as the time elapsed and after 30 minutes no change was detected. 2. Initial currency was higher in low copper amalgam compared to high copper amalgam. Intitial currency was the highest in low copper lathe-cut amalgam. 3. Group of gold coated with hydrazine had the most reduction in galvanic currency. 4. Group of amalgam coated with silver nitrate or potassium chromate also showed significant reduction in galvanic currency. 5. The bonding agents also helped reduce galvanic currency. 6. Of all the agents used to reduce galvanic currency, silver nitrate showed the best result.

  • PDF

Inhibition of Biological Perchlorate Reduction by Nitrate and Oxygen (질산염과 산소에 의한 생물학적 퍼클로레이트 환원의 저해)

  • Choi, Hyeok-Sun
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.6
    • /
    • pp.29-34
    • /
    • 2009
  • In this study, a chloride ion probe as a direct measurement for perchlorate reduction was used to determine whether biological perchlorate reduction was inhibited by other electron acceptors ($O_2$ and ${NO_3}^-$) and to investigate competition of electron acceptors for using electron donors. Profiles of chloride production (= perchlorate reduction) in flasks containing perchlorate reducing populations were monitored by a chloride ion probe. Biological reduction of 2 mM perchlorate was inhibited by 2 mM nitrate that chloride production rate was decreased by 30% compared to perchlorate used as the only electron acceptor and chloride production rate was decreased by 70% when acetate was limited. Reduction of 2mM perchlorate was completely inhibited by oxygen at 7~8 mg/L, regardless of acetate excess / limitation.

복합오염물질제거를 위한 현장반응층 이용에 관한 연구

  • 조현희;박재우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.168-171
    • /
    • 2003
  • This research was conducted to assess the performance of the mixed reactive materials with sand, iron filings, and HDTMA-bentonite for trichloroethylene (TCE) and chromate removal under controlled groundwater flow conditions. TCE and chromate removal rates with the mixtures of iron filing/HDTMA-bentonite were highest among four columns due to reduction by iron filings and sorption by HDTMA-bentonite. The greater capacity of the mixed iron filing/HDTMA-bentonite compared HDTMA-bentonite was due to an enhanced chromate reduction in addition to chromate sorption. The presence of chromate caused greater inhibition of TCE removal in the column with iron filings, while the presence of TCE caused less inhibition of TCE. Also, nitrate caused the decrease in TCE removal relative to chloride. Nitrate ions may also significantly affect TCE reduction rates by competing for electrons with the chlorinated compounds. The anion and co-existed contaminants competing effects should be considered when designed permeable reactive barriers (PRBs) composed of zero valent iron for field applications to remediate TCE and chromate.

  • PDF

Physiological and Ecological Characteristics of Indigenous Soybean Rhizobia Distributed in Korea -IV. Dissimilartory Nitrate Reduction and Protein Characteristics of Indigenous Soybean Rhizobia (우리나라 토착대두근류균(土着大豆根瘤菌)의 분포상태(分布狀態)와 생리(生理) 및 생태학적(生態學的) 특성(特性) -제(第)IV보(報) 토착대두근류균(土着大豆根瘤菌)의 질산환원(窒酸還元) 및 균체단백질(菌體蛋白質) 특성(特性))

  • Ryu, Jin-Chang;Suh, Jang-Sun;Lee, Ju-Yeong;Lee, Sang-Kyu;Cho, Moo-Je
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.3
    • /
    • pp.275-283
    • /
    • 1987
  • In order to find out the effectiveness of nitrogen fixation in rhizobia-legume symbiotic relationship, ecological and physiological characteristics of indigenous rhizobia distributed in Korean soils, that is, dissimilatory nitrate reduction patterns of indigenous soybean rhizobia isolated from four different soils, and differences in one-and two-dimensional polyacrylamide gel electrophoretic pattern of proteins among the each subgroups of Bradyrhizobium japonicum and Rhizobium fredii, were investigated. The results were summarized as follows: 1. The indigenous soybean rhizobia isolated from four different soils could be classified into 4 groups depending on growth rate and dissimilatory nitrate reduction pattern, that is, $S_1$ (slow-grower; Bradyrhizobium japonicum and nitrate denitrifier), $S_2$ (slow-grower; Bradyrhizobium japonicum and nitrate respirer), $F_1$ (fast-grower; Rhizobium fredii and denitrifier), and $F_2$ (fast-grower; Rhizobium fredii and nitrate respirer). 2. The population ratio of fast- to slow-growing R. japonicum was 39% to 61%, and the ratio of denitrifier to nitrate respirer was 31% to 69% and 89% to 11% in fast and slow-grower, respectively. Some differences were observed between fast- and slow-growing R. japonicum but no significant difference was observed between denitrifier and nitrate respirer within same growth type by one and two dimensional SDS-polyacrylamide gel electrophoretic patterns.

  • PDF

A Batch Study on BTEX and MTBE Biodegradation by Denitrifiers under Aerobic and Anaerobic Conditions

  • 오인석;이시진;장순웅
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.467-470
    • /
    • 2003
  • Leaking underground storage tanks are a major source of groundwater contamination by petroleum hydrocarbons. Aerobic bioremediation has been highly effective in the remediation of many fuel releases. However, Bioremediation of aromatic hydrocarbons in groundwater and sediments is ofen limited by the inability to provide sufficient oxygen to the contaminated zones due to the low water solubility of oxygen. Nitrate can also serve as an electron acceptor and results in anaerobic biodegradation of organic compounds via the processes of nitrate reduction and denitrification. Because nitrate is less expensive and more soluble than oxygen. it may be more economical to restore fuel-contaminated aquifers using nitrate rather than oxygen. And denitrifying bacteria are commonly found in the subsurface and in association with contaminated aquifer materials. These studies have shown that BTEX and MTBE can be degraded by the nitrate-amended microcosms under aerobic and anaerobic conditons. Biodegradation of the toluene and ethylbenzne compounds occurred very quickly under denitrifying conditions. MTBE, benzene and p-xylene were recalcitrant under denitrifying conditions in this study, But finally Biodegradaton was observed for all of the test compounds.

  • PDF

Growth Properties of the Iron-reducing Bacteria, Shewanella putrefaciens IR-1 and MR-1 Coupling to Reduction of Fe(III) to Fe(II)

  • Park, Doo-Hyun;Kim, Byung-Hong
    • Journal of Microbiology
    • /
    • v.39 no.4
    • /
    • pp.273-278
    • /
    • 2001
  • Shewanela, putrefaciene IR-1 and MR-1 were cultivated by using various combinations electron donor-acceptor, lactate-Fe(III) lactate-nitrate, pyruvate-FE(III), pyruvate-nitrate H$_2$ acetate-Fe(III) and H$_2$-acetate-nitrate. Both strains grew fermentatively on pyruvate and lactate but not on without and electron acceptor. In culture with Fe(III), both astrains grew on pyruvate and lactate but on H$_2$-acetate- CO$_2$. In cultivation with nitrate, both stains grew on pyruvate lactage and on H$_2$-acetate-CO$_2$ The growth yields of IR-1 pyruvate, pyruvate-Fe(III) and lactate-Fe(III) were about 3.4, 3.5, and 3.6(g cell/M substrate), respectively. From the growth properties of both strains on media with Fe(III) as an electron acceptor, the bacterial growth was confirmed not to be increased by addition of Fee(III) as an electron acceptor to the growth medium, which indicates a possibility that the dissimilatory reduction of Fe(III) to Fe(III) may not be coupled to free energy production.

  • PDF

Synthesis of TiC/Co Composite Powder by the Spray Thermal Conversion of Metallic Salt Solution (금속염용액의 분무열분해에 의한 TiC/Co복합분말 제조)

  • 이길근;문창민;김병기
    • Journal of Powder Materials
    • /
    • v.10 no.4
    • /
    • pp.228-234
    • /
    • 2003
  • In the present study, the focus is on the synthesis of titanium carbide/cobalt composite powder by the spray thermal conversion process using metallic salt solution as the raw materials. Two types of oxide powders of Ti-Co-O system were prepared by the spray drying of two types of metallic salt solutions : titanium chloride-cobalt nitrate and $TiO_2$ powder-cobalt nitrate solutions. These oxide powders were mixed with carbon black, and then these mixtures were carbothermal reduced under a flowing argon atmosphere. The changes in the phase structure and thermal gravity of the mixtures during carbothermal reduction were analysed using XRD and TG-DTA. In the case of using the titanium chloride-cobalt nitrate solution, it could not be obtained TiC/Co composite powder due to contamination of the impurities during the spray drying of the solution. However, in tile case of using the $TiO_2$ powder-cobalt nitrate scullion, TiC-15 wt. %Co composite powder could be synthesized by the spray thermal conversion process. The synthesized TiC-15 wt. %Co composite powder at 120$0^{\circ}C$ for 2 hours has average particle size of 150 nm.