• Title/Summary/Keyword: Nitrate Reduction

Search Result 388, Processing Time 0.037 seconds

수질 장기관측자료를 활용한 우리나라의 지하수 수질변동 특성

  • 김규범;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.94-96
    • /
    • 2003
  • Since 1995, MOCT(Ministry of Construction and Transportation) and KOWACO(Korea Water Resources Corporation) have established the National Groundwater Monitoring Network in South Korea and also MOE(Ministry of Environment) has operated Groundwater Quality Monitoring network. Until 2001, 202 monitoring stations by MOCT and 780 monitoring wells by MOE have been constructed, measured groundwater level and analyzed water samples. Groundwater quality analysis has been conducted two times a year during last 6 years for all monitoring wells. The quality data has about 15 components including pH, COD, Count of Coliform group, and etc.. Trend analysis has been peformed for 6 components(Coliform, pH, COD, NO$_3$-N, Cl and EC) of water quality which are analyzed more than 7 times for total monitoring wells. Two test methods have been used ; Sen's test and Mann-Kendall test. These trend tests have been done at the 0.05 significance level. By the result of Sen's test, Count of Coliform group has either upward or downward trends at 4.3 percent of the monitoring points. pH does at 5.6 percent, COD does at 8.6 percent, Nitrate-Nitrogen does at 13.2 percent, Chloride does at 13.4 percent, and. EC does at 11.6 percent of the monitoring points. The exact causes of the groundwater quality trends are difficult to specify. Notable downward trends in nitrate at many monitoring points may be the result of reduction on some contamination sources. Potential causes include diminished agricultural areas, improvements in sewage treatment and a decrease in atmospheric deposition. Increase in chloride at many monitoring points may be the result of increased non-point source pollution such as road salting and runoff from sprawling paved developments and suburbs.

  • PDF

Synthesis and Microstructure of Porous Al2O3 with Nano-Sized Cu Dispersions (나노크기 Cu 분산입자를 갖는 Al2O3 다공체의 제조 및 미세조직 특성)

  • Yoo, Ho-Suk;Kim, An-Gi;Hyun, Chang-Yong
    • Korean Journal of Materials Research
    • /
    • v.23 no.1
    • /
    • pp.67-71
    • /
    • 2013
  • Porous $Al_2O_3$ dispersed with nano-sized Cu was fabricated by freeze-drying process and solution chemistry method using Cu-nitrate. To prepare porous $Al_2O_3$, camphene was used as the sublimable vehicle. Camphene slurries with $Al_2O_3$ content of 10 vol% were prepared by milling at $50^{\circ}C$ with a small amount of oligomeric polyester dispersant. Freezing of the slurry was done in a Teflon cylinder attached to a copper bottom plate cooled to $-25^{\circ}C$ while unidirectionally controlling the growth direction of the camphene. Pores were subsequently generated by sublimation of the camphene during drying in air for 48 h. The green body was sintered in a furnace at $1400^{\circ}C$ for 1 h. Cu particles were dispersed in porous $Al_2O_3$ by calcination and hydrogen reduction of Cu-nitrate. The sintered samples showed large pores with sizes of about $150{\mu}m$; these pores were aligned parallel to the camphene growth direction. Also, the internal walls of the large pores had relatively small pores due to the traces of camphene left between the concentrated $Al_2O_3$ particles on the internal wall. EDS analysis revealed that the Cu particles were mainly dispersed on the surfaces of the large pores. These results strongly suggest that porous $Al_2O_3$ with Cu dispersion can be successfully fabricated by freeze-drying and solution chemistry routes.

Statistical Optimization for Monacolin K and Yellow Pigment Production and Citrinin Reduction by Monascus purpureus in Solid-State Fermentation

  • Jirasatid, Sani;Nopharatana, Montira;Kitsubun, Panit;Vichitsoonthonkul, Taweerat;Tongta, Anan
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.3
    • /
    • pp.364-374
    • /
    • 2013
  • Monacolin K and yellow pigment, produced by Monascus sp., have each been proven to be beneficial compounds as antihypercholesterolemic and anti-inflammation agents, respectively. However, citrinin, a human toxic substance, was also synthesized in this fungus. In this research, solidstate fermentation of M. purpureus TISTR 3541 was optimized by statistical methodology to obtain a high production of monacolin K and yellow pigment along with a low level of citrinin. Fractional factorial design was applied in this study to identify the significant factors. Among the 13 variables, five parameters (i.e., glycerol, methionine, sodium nitrate, cultivation time, and temperature) influencing monacolin K, yellow pigment, and citrinin production were identified. A central composite design was further employed to investigate the optimum level of these five factors. The maximum production of monacolin K and yellow pigment of 5,900 mg/kg and 1,700 units/g, respectively, and the minimum citrinin concentration of 0.26 mg/kg were achieved in the medium containing 2% glycerol, 0.14% methionine, and 0.01% sodium nitrate at $25^{\circ}C$ for 16 days of cultivation. The yields of monacolin K and yellow pigment were about 3 and 1.5 times higher than the basal medium, respectively, whereas citrinin was dramatically reduced by 36 times.

Nutrient dynamics study of overlying water affected by peroxide-treated sediment

  • Haque, Niamul;Kwon, Sung-Hyun
    • Journal of Ecology and Environment
    • /
    • v.41 no.9
    • /
    • pp.235-245
    • /
    • 2017
  • Background: Loading of excess nutrient via bioremediation of polluted sediment to overlying water could trigger anoxia and eutrophication in coastal area. The aim of this research was to understand the changes of overlying water features such as dissolved oxygen (DO); pH; oxidation reduction potential (ORP); $chlorophyll-{\alpha}$ ($Chl-{\alpha}$); and nitrogen nutrients ammonia ($N-NH_4{^+}$), nitrate ($N-NO_3{^-}$), and nitrite ($N-NO_2^-$) when the sediment was not treated (control) and treated by calcium peroxide for 5 weeks. Methods: The water samples were analyzed for measuring physical and chemical properties along with the sediment analyzed by polymerase chain reaction (PCR) including denaturing gradient gel electrophoresis (DGGE) for identifying the phylogenetic affiliation of microbial communities. Results: Results showed that due to the addition of calcium peroxide in sediment, the overlying water exposed the rise of dissolve oxygen, pH, and ORP than control. Among the nitrogen nutrients, ammonia inhibition was higher in calcium peroxide treatment than control but in case of nitrate inhibition, it was reversed than control. $Chlorophyll-{\alpha}$ was declined in treatment column water by 30% where it was 20% in control column water. Actibacter and Salegentibacter group were detectable in the calcium-peroxide-treated sediment; in contrary, no detectable community ware found in control sediment. Both phylogenetic groups are closely related to marine microflora. Conclusions: This study emphasizes the importance of calcium peroxide as an oxygen release material. Interaction with peroxide proved to be enhancing the formation of microbial community that are beneficial for biodegradation and spontaneity of nutrient attenuation into overlying water.

Transesterification of Soybean Oil Using KOH/KL Zeolite and Ca/Undaria pinnatifida Char (KOH/KL제올라이트 및 Ca/미역촤를 이용한 대두유의 전이에스테르화 반응)

  • Jo, Yong Beom;Park, Sung Hoon;Jeon, Jong-Ki;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.23 no.6
    • /
    • pp.604-607
    • /
    • 2012
  • Solid base catalysts for biodiesel production were synthesized by impregnating basic metal species on two support materials with large specific surface area : zeolite and pyrolysis char. KL zeolite and Undaria pinnatifida char were impregnated with KOH aqueous solution and calcium nitrate solution, respectively, to enhance the basic strength. The catalysts synthesized were characterized using Hammett indicators and $CO_2$-TPD analysis. Biodiesel was produced using soybean oil and methanol over the catalysts synthesized. The content of fatty acid methyl esters was measured to evaluate the catalytic activity. Generally, the catalytic activity increased with increasing quantity of basic metal impregnated but impregnation of excessive amount of metal could cause reduction in the activity.

Isolation and Identification of Alkalophilic Microorganism Producing Xylanase (Xylanase를 생산하는 호알칼리성 균주의 분리 및 동정)

  • Choi, Ji-Hwi;Bai, Dong-Hoon
    • Food Engineering Progress
    • /
    • v.14 no.3
    • /
    • pp.263-270
    • /
    • 2010
  • An alkalophilic microorganism named DK-2386, which produces xylanase, was isolated from soil of Taejo-mountain, Cheonan-si, Chungnam, Korea. The isolated strain was characterized as Gram-positive, with size of 0.4${\times}$2.5 ${\mu}$m, spore forming, anaerobic, catalase positive, possessed with hydrolysis abilities of casein, starch, sodium carboxy methyl cellulose, and xylan, reduction of nitrate to nitrite, resistant against lysozyme, urease positive, and motility positive. The color of culture broth was reddish yellow. The strain DK-2386 was identified as Bacillus agaradhaerens by whole cell fatty-acid composition analysis and 16S rDNA sequence analysis. However, it was not identical to Bacillus agaradhaerens 40952 obtained from the Korean Culture Center of Microorganism in its colour of culture broth. Therefore, we have named the newly isolated strain as Bacillus agaradhaerens DK-2386.

Effects of Light Intensity, Nutrient Solution Compositions before Harvest and the Time of Nutrient Solution Removal on Nitrate Contents in Hydroponically-Grown Leaf Lettuces in Closed Plant Production System (폐쇄형 식물생산시스템에서 광도, 수확 전 양액조성 및 양액결제시기가 잎상추의 체내 질산염 함량에 미치는 영향)

  • Yeo, Kyung-Hwan;Choi, Gyeong-Lee;Lee, Jung-Sup;Lee, Jae-Han;Park, Kyoung-Sub;Kim, Jin-Hyun
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.393-401
    • /
    • 2017
  • The nitrate ($NO_3{^-}$) accumulation of hydroponically grown leafy vegetables may increase in the condition of a closed-type plant production system with low light intensity due to low activity of enzymes involved in nitrogen assimilation and the use of $NO_3-N$ as major nitrogen source. The objective of this study is to investigate the effects of light intensities, nutrient solution compositions and the time of nutrient solution removal before harvest on nitrate contents of hydroponically-grown lettuces in a closed plant production system. The reduction of nitrate contents in leafy lettuces 'Cheongchima' was higher in the treatments of 'TW' (nutrient solution removal) and '$(NH_4)_2CO_3$' (use of ammonium carbonate as nitrogen source) than those in other treatments, which significantly lowered fresh weight and leaf area of the plants. In the light intensity of $100{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, the nitrate content was effectively reduced without causing any growth retardation, by substitution of the nutrient solution composition that $NO_3-N$ was removed ('$NO_3-N$ removal' treatment) or the half strength of standard nutrient solution was applied ('1/2 S' treatment), for 7days before harvest. The effects of light intensity and the time of nutrient solution removal before harvest on growth and nitrate contents in leafy lettuces were investigated. The nitrate contents in leaves under the light condition of $300{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ before nutrient solution removal were lower than those of 100 or $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. The removal of nutrient solution for 7 days before harvest quickly reduced the amount of nitrates in leaves in all the light intensities with a greater degree under the $300{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ of light condition, while the 7 days-removal with both 200 and $300{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ of light conditions caused decrease in 16~31% of leaf area and 20~35% of fresh weight, compared to the 3 days-removal treatment. The nitrate contents were greatly reduced from 3,018 to 1,035 in $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, and 2,021 to 480 ppm in the light condition of $300{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, with the nutrient solution removal for 3 days before harvest, without causing any deterioration in growth and product quality. The vitamin C contents in leaves were higher in the treatment of nutrient solution removal for both 3 and 5 days before harvest with the light condition of $300{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ than those in the light condition of 100 or $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$.

Interactions between Oxidative Pentose Phosphate Pathway and Enzymes of Nitrate Assimilation "Nitrate Reductase, Nitrite Reductase, Glutamine Synthetase$_1$" and Ammonium Reassimilation "Glutamine Synthetase$_2$" as affected by $No_3$-Concentration ($No_3$-수준이 Oxidative Pentose Phosphate Pathway와 질산동화작용 효소"Nitrate Reductase, Nitrite Reductase, Glutamine Synthetase$_1$" 및 암모늄재동화작용 주요효소"Glutamine Synthetase$_2$"활성도의 상호관계에 미치는 영향)

  • Sohn, Sang-Mok;Michael James Emes
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.5
    • /
    • pp.468-475
    • /
    • 1992
  • In order to understand more clearly the integration between N-assmilation and C-metabolism in relation to N fertilization, a pot experiment with 5 different level of N fertilization(0, 5, 10, 25, 50 mM NO$_3$$_{[-10]}$ ) was conducted in Manchester, U.K. The peas (Pisum sativum L., cv. Early Onward) were sown in vermiculate (5 cm depth) and cultivated for 6 days under temperature controlled dark room conditions ($25^{\circ}C$). The plants received frequent irrigation with a nutrient solution: it was fertilized every 2 days, 3 times a day at 10h, 13h, 16h respectively. Elevated NO$_3$$^{[-10]}$ concentration, the activity levels of NR, NiR, total GS(crude extract), GS$_2$(plastid) in both root and shoot were increased and reached the peak in 5~25 mM, except NiR specific activity which increased its activity continually until 50 mM NO$_3$$^{[-10]}$ treatment. Total activities of GS (crude extract) in both root and shoot became higher than those of GS$_2$(Plastid), and the activity ratios of total GS in the crude extract and GS$_2$ in the plastids were 3.0 to 4.3 in root, but 3.2 to 10.6 in shoot. It was concluded that the reductants and A TP from OPPP itself should be enough to achieve the high rate of NR, NiR, GS$_1$, GS$_2$ in plant root and shoot for reduction or assimilation of nitrogen, but these enzyme activities might be inhibited by an excess of NO$_3$$^{[-10]}$ influx over the reduction capacity.

  • PDF

Inference of Sequencing Batch Reactor Process using Oxidation Reduction Potential (ORP profile을 이용한 연속 회분식 반응기(Sequencing Batch Reactor)에서 무산소공정 추론)

  • Sim, Mun Yong;Bu, Gyeong Min;Im, Jeong Hun;U, Hye Jin;Kim, Chang Won
    • Journal of Environmental Science International
    • /
    • v.13 no.3
    • /
    • pp.245-250
    • /
    • 2004
  • The SBR(Sequencing Batch Reactor) process is ideally suited to treat high loading wastewater due to its high dilution rate. SBR operates by a cycle of periods consisting of filling, reacting, settling, decanting and idling. The react phases such as aeration or non-aeration, organic oxidation, nitrification, denitrification and other bio-logical reactions can be achieved in a reactor. Although the whole reactions can be achieved in a SBR with time distributing, it is hard to manage the SBR as a normal condition without recognizing a present state. The present state can be observed with nutrient sensors such as ${NH_{4}}^{+}-N$, ${NO_{2}}^{-}-N$, ${NO_{3}}^{-}-N} and ${PO_{4}}^{ 3-}-P.$ However, there is still a disadvantage to use the nutrient sensors because of their high expense and inconvenience to manage. Therefore, it is very useful to use common on-line sensors such as DO, ORP and pH, which are less expensive and more convient. Moreover, the present states and unexpected changes of SBR might be predicted by using of them. This study was conducted to get basic materials for making an inference of SBR process from ORP(oxidation reduction potential) of synthetic wastewater. The profiles of ORP, DO, and pH were under normal nitrification and denitrification were obtained to compare abnormal condition. And also, nitrite and nitrate accumulation were investigated during reaction of SBR. The bending point on ORP profile was not entirely in the low COD/NOx ratio condition. In this case, NOx was not entirely removed, and minimum ORP value was presented over -300mV. Under suitable COD/NOx ratio which complete denitrification was achieved, ORP bending point was observed and minimum ORP value was under -300m V. Under high COD/NOx ratio, ORP bending point was not detected at the first subcycle because of the fast denitrification and minimum ORP value was under -300mV at the time.

Distribution of Vital, Environmental Components and Nutrients Migration Over Sedimentary Water Layers

  • Khirul, Md Akhte;Kim, Beom-Geun;Cho, Daechul;Kwon, Sung-Hyun
    • Journal of Environmental Science International
    • /
    • v.30 no.3
    • /
    • pp.195-206
    • /
    • 2021
  • Contaminated marine sediment is a secondary pollution source in the coastal areas, which can result in increased nutrients concentrations in the overlying water. We analyzed the nutrients release characteristics into overlying water from sediments and the interaction among benthic circulation of nitrogen, phosphorus, iron, and sulfur were investigated in a preset sediment/water column. Profiles of pH, ORP, sulfur, iron, nitrogen, phosphorus pools were determined in the sediment and three different layers of overlying water. Variety types of sulfur in the sediments plays a significant role on nutrients transfer into overlying water. Dissimilatory nitrate reduction and various sulfur species interaction are predominantly embodied by the enhancing effects of sulfide on nitrogen reduction. Contaminant sediment take on high organic matter, which is decomposed by bacteria, as a result promote bacterial sulfate reduction and generate sulfide in the sediment. The sulfur and iron interactions had also influence on phosphorus cycling and released from sediment into overlying water may ensue over the dissolution of ferric iron intercede by iron-reducing bacteria. The nutrients release rate was calculated followed by release rate equation. The results showed that the sediments released large-scale quantity of ammonium nitrogen and phosphate, which are main inner source of overlying water pollution. A mechanical migration of key nutrients such as ammonia and inorganic phosphate was depicted numerically with Fick's diffusion law, which showed a fair agreement to most of the experimental data.