• Title/Summary/Keyword: Nitrate

Search Result 3,277, Processing Time 0.028 seconds

Effect of Timing of Nutrient Starvation during Transplant Production on the Growth of Runner Plants and Yield of Strawberry 'Seolhyang' (딸기 '설향' 육묘기 양분 공급 중단 시기가 자묘 생육 및 수량에 미치는 영향)

  • Kim, Dae-Young;Chae, Won Byoung;Kwak, Jung-Ho;Park, Suhyung;Cheong, Seung-Ryong;Choi, Jong Myung;Yoon, Moo Kyoung
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.421-426
    • /
    • 2013
  • This study was conducted to investigate the effects of timing of nutrient starvation during transplant production on growth of runner plants and yield of strawberry 'Seolhyang' (Fragaria ${\times}$ ananassa). Nutrient solution supply at the level of EC (electrical conductivity) 0.8 $dS{\cdot}m^{-1}$ was terminated at interval about 10 days between July 25 and September 5. As a result, the growth of above-ground part was inhibited while root growth increased when the nutrient starvation treatment had been brought forward to July 25. It also reduced the T/R ratio significantly and chlorophyll content was tended to be lower than the other treatment. In addition, it significantly promoted the budding, flowering and harvest of first flower cluster. On the other hand, the period of harvest was delayed more than two weeks when the nutrients were continuously supplied after the middle of August. An accumulated marketable fruit yield per plant until the end of January and February was 169 and 266g, respectively in the treatment of nutrient starvation on July 25, which was 71 and 12% increase, respectively, as compared with those in the treatment of September 5. Therefore, the appropriate nutrient starvation in the late season of strawberry nursery period could be expected the increase in yield and income during the winter season by promoting the flower bud differentiation as reducing the endogenous nitrate level of the plantlet.

Oceanographic Features Around Aquaculture Areas of the Eastern Coast of Korea (동해안 연안양식장 주변해역의 해양학적 특성)

  • Jeong, Hee-Dong;Kim, Sang-Woo;Kwon, Kee-Young;Lim, Jin-Wook;Kwoun, Chul-Hui
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.4
    • /
    • pp.334-344
    • /
    • 2013
  • In order to understand the characteristics of oceanic environment in the coastal aquaculture waters of the East Sea, the observation of the CTD (temperature and salinity), dissolved oxygen, chlorophyll a and N/P (DIN ($NO_2$-N, $NO_3$-N, $NH_4$-N) : DIP($PO_4$-P)) ratio was carried out at Sokcho, Jukbyon and Gampo in February, April, June, August, October, December 2013. Based on T(temperature)-S(salinity) diagram analysis, the water masses in the study area were divided into 3 groups; Tsushima Surface Water (TSW: $20-28.3^{\circ}C$ temperatures and 31.04-33.75 salinities), Tsushima Middle Water (TMW: $8.1-16.3^{\circ}C$ and 33.00-34.49), and North Korean Cold Water (NKCW: $1.8-9.4^{\circ}C$ and 33.78-34.42). In winter, DO concentrations in the northern part were higher than those in southern part. In spring and fall, they were low in the surface layer, and increased in summer. Chl-a concentrations < $0.4{\mu}g/L$ dominated in February, April, October and December. Chl-a concentrations were higher in June and August. In particular, the highest Chl-a concentration > $2{\mu}g/L$ was observed in the middle layer of Gampo in August. In February, April, June and December, the N/P ratio in the most of the water masses was less than the Redfield ratio (16), indicating that nitrate did act as a limiting factor in phytoplankton growth. On the contrary, in August and October, the N/P ratio in surface and sub-surface layer was greater than the Redfield ratio, suggesting that phosphate was a limiting factor.

Microbiological Quality of Agricultural Water in Jeollabuk-do and the Population Changes of Pathogenic Escherichia Coli O157:H7 in Agricultural Water Depending on Temperature and Water Quality (전라북도 지역 농업용수의 미생물학적 특성 및 온도와 수질에 따른 농업용수의 병원성대장균 O157:H7 밀도 변화)

  • Hwang, Injun;Ham, Hyeonheui;Park, Daesoo;Chae, Hyobeen;Kim, Se-Ri;Kim, Hwang-Yong;Kim, Hyun Ju;Kim, Won-Il
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.4
    • /
    • pp.254-261
    • /
    • 2019
  • BACKGROUND: Agricultural water is known to be one of the major routes in bacterial contamination of fresh vegetable. However, there is a lack of fundamental data on the microbial safety of agricultural water in Korea. METHODS AND RESULTS: We investigated the density of indicator bacteria in the surface water samples from 31 sites collected in April, July, and October 2018, while the groundwater samples were collected from 20 sites within Jeollabuk-do in April and July 2018. In surface water, the mean density of coliform, fecal coliform, and Escherichia coli was 2.7±0.55, 1.9±0.71, and 1.4±0.58 log CFU/100 mL, respectively, showing the highest bacterial density in July. For groundwater, the mean density of coliform, fecal coliform, and E. coli was 1.9±0.58, 1.4±0.37, and 1.0±0.33 log CFU/ 100mL, respectively, showing no significant difference between sampling time. The survival of E. coli O157:H7 were prolonged in water with higher organic matter contents such as total nitrogen (TN), and nitrate-nitrogen (NO3-N). The reduction rates of E. coli O157:H7 in the water showed greater in order of 25, 35, 5, and 15℃. CONCLUSION: These results can be utilized as fundamental data for prediction the microbiological contamination of agricultural water and the development of microbial prevention technology.

Development studies of microalgae-based closed recirculating bivalves adults conditioning system: I. Induction of the gametogenesis (이매패류 어미관리를 위한 미세조류 기반 폐쇄-순환여과시스템 개발 연구: I. 성 성숙 유도)

  • Kim, Chung Yoo;Hur, Young Baek;Han, Jong Chul;Park, Young chul
    • The Korean Journal of Malacology
    • /
    • v.32 no.3
    • /
    • pp.231-240
    • /
    • 2016
  • Techniques were developed for holding and conditioning of Pacific oysters, Crassostrea gigas, in a closed recirculating system. Experimental adults were used 500 oysters ( x two system, total 1,000 oysters) which were collected in $20^{th}$ March 2016 from long-line aquaculture farm at the south coast of Korea. During conditioning periods concentrated live microalgae as Isochrysis sp. $15{\times}10^7cells/mL$, Tetraselmis sp. $2{\times}10^7cells/mL$ and Pheaodactylum sp. $18{\times}10^7cells/mL$ were added 5 L every day, respectively which micro algae were functioned as diets and biological filter. Over all experimental periods total water exchange rate was 21.3% (daily 0.5%). Over 42 days conditioning, female and male oysters were maturated 90.9% and 94.4%, respectively. Survival rate was 98.7%. Mean shell hight (8.3 mm), total wet weight (19.2 g), meat wet weight (5.0 g) and shell wet weight (13.6 g) were significantly increased (P < 0.05). Water quality parameters including the water temperature ($22.1{\pm}0.4^{\circ}C$), salinity ($24.9{\pm}04$), dissolved oxygen (5.1-7.9 mg/L) and pH ($7.93{\pm}0.15$) were kept stable. Concentration of dissolved inorganic nutrient as ammonia (1.96-0.35 mg/L), nitrite (0.03-0.16 mg/L), nitrate (1.34-0.47 mg/L), DIP (0.42-0.03 mg/L) and silicate (3.83-0.00 mg/L) were significantly decreased throughout experiment except nitrite which was increased (P < 0.05), but nitrogenous components stayed below toxic levels (ammonia 0.0-5.5 mg/L, nitrite 0.0-460.0 mg/L) which indicated that closed recirculation system with microalgae based bio-filter could supply sufficiently environment condition to holding and conditioning of oyster.

Analysis of Environmental Factors Related to Seasonal Variation of Bacteria and Heterotrophic Nanoflagellate in Kyeonggi Bay, Korea (경기만에서 박테리아와 종속영양편모류의 계절변화에 미치는 환경요인 분석)

  • Baek, Seung Ho;You, Kai;Han, Myung-Soo
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.2
    • /
    • pp.198-206
    • /
    • 2017
  • From June 2007 to May 2008, seasonal variations of bacterial abundance and heterotrophic nanoflagellate (HNF), together with environmental factors, were investigated at weekly and monthly intervals in Kyeonggi Bay. During the study period, the water temperature and salinity varied from $1.9^{\circ}C{\sim}29.0^{\circ}C$ and 31~35.1 psu, respectively. The concentration of ammonia, nitrate+nitrite, phosphate, and silicate ranged from 0.01 to $3.22{\mu}M$, 2.03 to $15.34{\mu}M$, 0.06 to $1.82{\mu}M$, and 0.03 to $18.3{\mu}M$, respectively. The annual average concentration of Chl. a varied from $0.86{\mu}g\;L^{-1}$ to $37.70{\mu}g\;L^{-1}$; the concentration was twice as much at the surface than at the deeper layers. The abundance of bacteria and HNF ranged from $0.29{\times}10^6$ to $7.62{\times}10^6cells\;mL^{-1}$ and $1.00{\times}10^2$ to $1.26{\times}10^3cells\;mL^{-1}$, respectively. In particular, there were significant correlations between bacteria and HNF abundance (p<0.05), and then the high abundance of HNF was frequently observed with an increase of bacterial abundance in summer (p<0.001). Our results therefore indicate that bacterial abundance in the bay was mainly controlled by resources supplied as organic and inorganic substances from Lake Shihwa due to the daily water exchange after dike construction. Also, the bacterial abundance was significantly controlled by HNF grazing pressure (top-down) in the warm seasons, i.e. excluding winter, in the Kyeonggi Bay.

Changes of Stream Water Quality and Loads of N and P from the Agricultural Watershed of the Yulmunchon Tributary of the Buk-Han River Basin (북한강 율문천 소유역에서 수질 변화와 농업활동에 의한 N, P 부하량)

  • Jung, Yeong-Sang;Yang, Jae E.;Park, Chol-Soo;Kwon, Young-Gi;Joo, Young-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.2
    • /
    • pp.170-176
    • /
    • 1998
  • Nitrogen and phosphorus loads from an agricultural watershed of the Yulmun-chon tributary in the Buk-Han River Basin were quantified based on total amounts of water stream flow. The water quality and soil loss were estimated. Levels of the stream were recorded automatically using the water level meter. The flow velocities, along with the cross-sectional areas of the riverbed, were measured to estimate total amounts of water flow at three monitoring sites in this tributary. Water samples were collected at nine sites with two weeks interval from May to August and analyzed for the water quality parameters. Amounts of soil loss were estimated by the USLE. The size of the Yulmunchon watershed was 3,210 ha, of which paddy and upland soil areas were composed about 41%. The total amounts of soil loss from the watershed areas were estimated to be $13,273Mg\;year^{-1}$, showing 53%, 46% and 0.7% of the soil loss ratio from upland, forest, and paddy areas, respectively. Electrical conductivities and Nitrogen concentrations of the stream water were higher in the lower watershed area than in the upper area. Increments of N were higher for $NO_3-N$ than $NH_4-N$. Nitrate nitrogen was the major N form to pollute the water due to the agricultural activity. Total runoff was about 72% of the total precipitation in the watershed. The maximum loads of T-N and T-P due to the runoff were estimated to be 1,500 and $5kg\;day^{-1}$, respectively. Concentrations of $NO_3-N$ and $NH_4-N$ in the runoff were 13.5 and 1.8 times higher than those in precipitation. The N loads were mainly from soil loss, application of fertilizer, and livestock wastes, which were 52% of total N load. Results demonstrated that reduction of fertilizer use and the soil loss would be essential for water quality protection of the agricultural watershed.

  • PDF

Effect of Chicken Manure Compost Application on the Growth of Vegetables and Nutrients Utilization in Upland Soil (계분퇴비 시용이 채소류 생육과 양분이용율에 미치는 영향)

  • Kim, Jong-Gu;Lee, Kyeong-Bo;Lee, Deog-Bae;Lee, Sang-Bok;Kim, Seong-Jo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.2
    • /
    • pp.177-182
    • /
    • 1998
  • To evaluate the effect of chicken manure compost(CMC) application on nutrient utilization and reduction of N fertilizer application for vegetables such of cabbage, reddish, and eggplant, four different application rates of CMC such as 0, 10, 30. $50Mg\;ha^{-1}$ were amended with three different rates of chemical fertilizer of 0, 15, $300kg\;ha^{-1}$. The efficiency of nutrient utilization on CMC were in the order of N, P, K. For each respective nutrient utilization by cabbage, reddish, and eggplant, N were 29%, 20%, 14%; P were 10%,<1%, and <1% ; K were 5%, 22%, 32%. The greater application of CMC, the less the efficiency, while the efficiency of P was increased with increasing application of CMC. The highest efficiency of nutrient utilization was found in $10Mg\;ha^{-1}$. The amounts of reduction of N fertilizer application in soils amended with $10Mg\;ha^{-1}$ of CMC with respect to maintain the normal production of each vegetables observed in this experiment were as follows: $25kg\;ha^{-1}$ and $15kg\;ha^{-1}$ less, and $13kg\;ha^{-1}$ more than the recommended rate for cabbage, eggplant, and reddish, respectively. For elution of available of N by the application of CMC, there was a gradual increase up to 30 day, then gradually decreased. However, there was increase of N eluted in the application of $50Mg\;ha^{-1}$. For soil chemical properties, pH, T-N, OM, and $P_2O_5$ were increased with increased application of CMC, as well as did cations such as K, Ca, and Mg. Yield and glucose of cabbage was significantly increased at the application of $30Mg\;ha^{-1}$ CMC, but content of nitrate in eggplant and raddish was highly increased with increasing application of N fertilizer and CMC. By the way, the yields of cabbage, reddish, and eggplant were slightly decreased with CMC application greater than $50Mg\;ha^{-1}$.

  • PDF

Dynamics of $NO_3^{-}$-N in Barley Rhizosphere and Optimum Rate of Nitrogen Top- Dressing Based on $N_{min}$ Soil Test (실초태 실소 의 보리 근권토양내 동적 변화와 $N_{min}$ 토양진단법에 의한 과정 실소추식량 결정)

  • 손상목;큐케마틴;한인아
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.2
    • /
    • pp.185-194
    • /
    • 1995
  • The prevention of excessive use of nitrogen fertilizer get an attention in Korea not only for minimizing $NO_3^-$ contamination of groundwater but also for establishment of environmental friendly sustainable agriculture. In order to find out the dynamics of $NO_3^-$ in barley rhizosphere and its suitability for nitrogen fertilization strategies and for environmental control, the accumulation of $NO_3^-$ in 3 layer, 0~30cm, 30~60cm, 60~90cm of soil profile has been detected in winter barley pro-duction system. It showed the recommended N fertilization rate for winter barley cause the $NO_3^-$ contamination of groundwater through $NO_3^-$ leaching during winter. The $NO_3^-$ content of 0~90cm soil depth have directly reflected the amount of basal N fertilization in the early spring, but not 0~30cm and 0~60cm soil depth. The contents of $NO_3^-$ measured to 0~30cm, 0~60cm soil depth were not significanly correlated with yield but the contents of $NO_3^-$ measured to 90cm soil depth was highly correlated with yield. Nitrogen fertilizer requirement could be estimated accurately by soil test and it provides field specific N rate recommendation for spring N application to winter barley. It was concluded that $N_{min}$ method could be applied to korean climatic and soil condition for optimal fertilizer application rate.

  • PDF

Hydrochemistry and Nitrogen and Sulfur Isotopes of Emergency-use Groundwater in Daeieon City (대전지역 민방위 비상급수용 지하수에 대한 수리화학과 질소 및 황 동위원소 연구)

  • 정찬호
    • The Journal of Engineering Geology
    • /
    • v.13 no.2
    • /
    • pp.239-256
    • /
    • 2003
  • The purpose of this study is to investigate the hydrochemical characteristics of emergency-use groundwater in the Daejeon area, and to elucidate the contamination source of $NO_3-N$ and the origin of sulfate in the groundwater. The groundwater shows weak acidic pH, the electrical conductivity ranging from 142 to $903{\;}\mu\textrm{S}/cm$, and the hydrochemical types of $Ca-HCo_3$ and $Ca-Cl(SO_4,{\;}NO_3)$. The Box-Whisker analysis and the Krigging analysis of chemical data of groundwater were made to demonstrate the concentration distribution of hydrochemical composition, and to compare the trend of hydrochemical data. The groundwater in the area of Dong-gu, Jung-gu and Daeduk-gu, where are old town, shows higher electrical conductivity, nitrate content, sulfate and $EpCO_2$ levels than groundwater in new town area of Seo-gu and Yusung-gu. ${\delta}^{15}N$ of groundwater in the area of Seo-gu and Yusung-gu ranges from +7.4 to $+9.6{\textperthousand}$, indicating that major contamination source of $NO_3-N$ is the leakage from municipal sewage pipe lines. ${\delta}^{15}N$ of groundwater in the old town area of Tong-gu, Jung-gu and Daeduk-gu shows the range between +10.2 and $+23.5{\textperthousand}$, meaning that major contamination source is leakage of septic tank. ${\delta}^{34}S$ of groundwater shows the range of $+3~13.4{\;}{\textperthousand}$. Sulfur isotope indicates the possibility of a sulfate reduction and the input of anthrophogenic source.

Assessment of Soil Contamination and Hydrogeochemistry for Drinking Water Sites in Korea (국내 먹는샘물 개발지역의 토양 오염 평가 및 수리지구화학적 특성)

  • 이두호;전효택
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.1
    • /
    • pp.41-53
    • /
    • 1997
  • Geochemical data of soil and water samples were presented in order to assess the environmental impart for drinking water sites. Microscopic observation of rock samples and physical and chemical analysis of soil and water samples were undertaken. The geology of study areas are classified into three groups such as granitic rocks, meta-sedimentary rocks and sedimentary rocks. Enrichment of heavy metals derived from those rocks is not found in this study areas. Soils were analyzed for Cu, Pb, Zn, Cd and Cr using AAS extracted by HNO$_3$+HClO$_4$ and 0.1 N HCl. Heavy metal concentrations in soils are within the range of those in uncontaminated soils. In comparison of metal contents extracted by 0.1 N HCl and HNO$_3$+HC1O$_4$, less than 10% of the heavy metals are present in the exchangeable fraction. In particular, an pollution index has been proposed to assess the degree of soil contamination. Pollution index in soils are between 0.03 and 0.47 therefore, soils are not polluted with heavy metals. Deep groundwaters within granitic rocks have been evolved into Na$\^$+/-HCO$_3$$\^$-/ type, whereas other deep groundwaters evolved into Ca$\^$2+/-HCO$_3$$\^$-/ type. The predominance of Na$\^$+/ over Ca$\^$2+/ in deep groundwaters within granitic rocks is a result of dissolution of plagioclase, but for sedimentary and meta-sedimentary rocks, dissolution of calcite is a dominant factor for their hydrogeochemistry. The pH, conductivity and contents of the most dissolved ions in the water increase with depth. Shallow groundwaters, however, are highly susceptible to pollution owing to agricultural activities, considering the fact that high contents of nitrate, chloride and potassium, and high K/Na ratio are observed in some shallow groundwaters. In a thermodynamic approach, most natural water samples are plotted within the stability fields of kaolinite and smectite. Therefore, microcline and other feldspars will alter to form clay minerals, such as kaolinite and smectite. From the modelling for water-rock interactions based on mass balance equation, models accord well with behavior of the ions and results of thermodynamic studies are derived.

  • PDF