• Title/Summary/Keyword: Niosome

Search Result 13, Processing Time 0.026 seconds

Transdermal Permeation of $[{^3}H]Acyclovir$ Using Niosome (니오솜을 이용한 $[^{3}H]$아시클로버의 경피투과)

  • Park, Sae-Hae;Lee, Soon-Young;Yong, Chul-Soon
    • Journal of Pharmaceutical Investigation
    • /
    • v.28 no.1
    • /
    • pp.43-50
    • /
    • 1998
  • Niosomes are vesicles formed from synthetic non-ionic surfactants, offering an alternative to chemically unstable and expensive liposomes as a drug carrier. Non-ionic surfactant and cholesterol mixture film leads to the formation of vesicular system by hydration with sonication method. The formation of niosome was ascertained by negative staining of TEM. The entrapment efficiency of niosomal suspension was gradually increased with increasing the ratio of cholesterol to surfactant. It was found that the niosome with 6 : 4 (polyoxyethylene 2-cetyl ether: cholesterol) ratio was more stable than those with other ratios. The topical application of acyclovir(ACV) in the treatment of herpes simplex virus type 1(HSV-1) skin disease has a long history. There are an increasing number of reports, however, in which topical ACV therapy is not as effective as oral administration. Lack of efficacy with topical ACV has been hypothesized to reflect the inadequate delivery of drug to the skin. We investigated the permeation of niosome containing $[^{3}H]ACV$ in hairless mouse skin using Franz diffusion cell model. Permeation coefficient(P) of aqueous ACV was $6.7{\times}10^{-4}\;(cm/hr)$ and that of ACV in niosome was $23.4{\times}10^{-4}\;(cm/hr)$, suggesting about 3.5 times increase in the transdermal permeation.

  • PDF

Preparation and Evaluation of Titrated Extract of Centella Asiatica Niosome/W/O System Cream for Site Specific Targeting (니오좀을 이용한 병풀 추출물 외용제의 제조 및 평가)

  • Kim, Dong-Woo;Cho, Mi-Hyun;Park, Sun-Young;Lee, Jong-Hwa;Lee, Gye-Won;Park, Mork-Soon;Park, Jin-Kyu;Jee, Ung-Kil
    • Journal of Pharmaceutical Investigation
    • /
    • v.32 no.4
    • /
    • pp.291-297
    • /
    • 2002
  • For preventing and curing the stretching mark, TECA Niosome/W/O system creams were formulated using Titrated Extract of Centella Asiatica (TECA) which is well known for its excellent wound healing effect. The lipid-water partition coefficients and the stabilities of TECA were evaluated and TECA Niosome/W/O system (TECA N/W/O) creams were prepared with different concentrations of cetyl alcohol and ceramide. TECA N/W/O cream was evaluated with respect to their rheological properties, permeation through excised skin of hairless mouse and in vitro and in vivo accumulation in the skin of hairless mouse. In addition, dermal thicknesses of hairless mouse skins were determined following the in vivo application of TECA N/W/O cream and control cream. TECA N/W/O creams showed pseudoplastic flow and hysteresis loop. The permeation of TECA from formulations through excised skin of hairless mouse did not observed. Amount of accumulated drug in the excised skin of hairless mouse was deσeased with an increase in the concentration of cetyl alcohol and showed no relationship with concentration of ceramide. Amount of accumulated drug in formulation A-3 was higher than in niosome suspension and other formulations. In in vivo experiment, amount of accumulated drug in formulation A-2 and A-3 was much higher than that of niosome suspension. Being treated with the N/W/O cream for 8 weeks, the dermal thickness of hairless mouse skin was increased 3.2 times than that of 16 weeks-control group.

Physical Properties and Skin Penetration of Niosome Formulations Containing Minoxidil and Diaminopyrimidine Oxide (미녹시딜과 다이아미노피리미딘옥사이드 성분을 함유하는 니오좀 제형의 물성 및 피부투과)

  • Bo Kyung Kim;Won Hyung Kim;Kyung-Sup Yoon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.2
    • /
    • pp.127-139
    • /
    • 2023
  • In this study, minoxidil, which is well known as a pharmaceutical raw material, and diaminopyrimidine oxide (DAO), which is a cosmetic raw material, were used as active ingredients to evaluate the physical properties of niosomes and compare the skin penetrations of artificial skin. To prepare niosomes of the size of nanoparticles, a high pressure homogenization method was used, and physical properties were evaluated with a zetasizer. The particle size of the noisome including the active ingredient was measured to be 99 to 123 nm according to HLB, and the zeta potential was measured in the range of -60 to -81 mV. Through DSC (differential scanning colorimetry), it was confirmed that minoxidil, a crystalline component, was uniformly dissolved in an amorphous state in niosomes. In order to confirm and compare skin penetration, it was measured by the in vitro Franz diffusion cell method, and the niosome formulation showed 3.4 times higher penetration for minoxidil and 11.1 times higher penetration for DAO than the control gel formulation. In addition, when comparing the skin penetration of minoxidil niosome and DAO niosome, a similar trend was shown, and the penetration amount of DAO was relatively high. The shapes of the niosome formulations with different HLB values were observed using Cryo-TEM, and it was confirmed that vesicles were formed in all of them and that they were intermediate between SUV (small unilamella vesicle) and LUV (large unilamella vesicle). Through this study, minoxidil, an effective drug for hair loss, and DAO, a cosmetic raw material, can be effectively delivered to the skin by encapsulating them in a noisome formulation.

Formulation Design and Evaluation of Niosome Containing Itraconazole for Dermal Delivery System (니오좀 시스템을 이용한 이트라코나졸 외용제의 제제 설계 및 평가)

  • Cho, Hye-Jung;Kyong, Kee-Yeol;Lee, Gye-Won;Jee, Ung-Kil
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.3
    • /
    • pp.165-171
    • /
    • 2005
  • Itraconazole is a triazole antifungal agent to inhibit most fungal pathogens. However, it is difficult for itraconazloe to be delivered by topical system due to its poor aqueous solubility. First, niosomes containing drug were prepared with span 60, cholesterol. tocopherol and poloxamer 407 as vesicle forming agents in an effort to increase solubility of itraconazole. And then prepared niosomes were dispersed in O/W creams (containing xanthan gum, glycerin, vaseline, glyceryl monostearate and $Cerix^{\circledR}-5$) or gels (containing xanthan gum and poloxamer 407). Both creams and gels were evaluated with respect to their rheological properties, in vitro permeation through excised skin of hairless mouse. Creams or gels containing niosome showed pseudoplastic flow and hysteresis loop. For both creams and gels, viscosity was increased with increasing the content of glycerine or vaseline and the content of gel forming polymer, respectively. In creams, the permeability of drug to skin was decreased with increasing the viscosity of cream. The permeability of drug was affected by pH as well as viscosity of gel. In vitro permeation test results demonstrated that cream formulations showed better permeability than gels. In conclusion, these results suggest that creams formulation containing niosome can be useful for the topical delivery of intraconazole.

Study on Application of Skin Care Cosmetic and Stabilization of Idebenone by Forming Niosome Vesicle Technology

  • Kim, In-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.592-599
    • /
    • 2019
  • This study is to stabilize insoluble and unstable active ingredient which is Idebenone (INCI name: hydroxydecyl ubiquinone) in a multi-lamellar vesicle (MLV) and to stabilize it in the skin care cosmetics. Idebenone is good effective raw material in the treatment of Alzheimer's disease in the medical field and a powerful antioxidant in dermatology. It is well known as a substance that inhibits the formation of melanin and cleans the skin pigment. However, it did not dissolve in any solvent and it was difficult to apply in cosmetic applications. Niosome vesicle was able to develop a nano-particle by making a multi-layer of idebenone encapsulated with a nonionic surfactant, hydrogenated lecithin and glycine soja (soybean) sterols and passing it through a high pressure microfluidizer. Idebenone niosome vesicle (INV) has been developed to have the ability to dissolve transparently in water and to promote transdermal penetration. The appearance of the INV was a yellowish liquid having specific odor, and the particle size distribution of INV was about 10~80 nm. The pH was 5~8 (mean=6.8). This capsulation with idebenone was stored in a $45^{\circ}C$ incubator for 3 months and its stability was observed and quantitatively measured by HPLC. As a result, the stability of the sample encapsulated in the niosome vesicle (97.5%) was about 66.3% higher than that of the non-capsule sample of 32.5%. Idebenone 1% INV was used for the efficacy test and clinical trial evaluation as follows. The anti-oxidative activity of INV was 38.2%, which was superior to that of 12.8% tocopherol (control). The melanin-reducing effect of B16 melanoma cells was better than INV (17.4%) and Albutin (control) (9.6%). Pro-collagen synthesis rate was 128.2% for INV and 89.3% for tocopherol (control). The skin moisturizing effect was 15.5% better than the placebo sample. The elasticity effect was 9.7% better than the placebo sample. As an application field, INV containing 1% of idebenone is expected to be able to develop various functional cosmetic formulations such as skin toner, ampoule essence, cream, eye cream and sunblock cream. In addition, it is expected that this encapsulated material will be widely applicable to emulsifying agents for skin use in the pharmaceutical industry as well as the cosmetics industry.

Development of Bioavailability Enhancement System for the Skin Permeation Promotion of Psolarea corylifolia Extract (보골지 추출물의 피부 투과 촉진 시스템 개발)

  • Cho, Young-Ho;Ahn, Ghe-Whan;Yang, Seung-Won;Cho, Kwan-Hyun;Kim, Sang-Won;Baek, Ki-Myoung;Lee, Gye-Won
    • KSBB Journal
    • /
    • v.26 no.6
    • /
    • pp.505-512
    • /
    • 2011
  • Psolarea corylifolia extract that contains bakuchiol is known to have anti-microbial, anti-inflammatory and anti-scarring effects. In this study, a vesicles such as liposome, niosome, and transfersome were produced to encapsulate P. corylifolia extract and measured their stability and physiochemical property. The skin permeation and partitioning of P. corylifolia extract in the vesicles were elucidated in nude mouse skin by using Franz diffusion cells after topical application for 24 h. After storage at 25, 40, $70^{\circ}C$, and light, the stability of bakuchiol incorporated into the vesicles was maintained for 30 days. The optimal concentration of P. corylifolia extract entrapped into the vesicles was found to be 5~10%. From the physicochemical studies, after storage at 4, 25, and $40^{\circ}C$, the viscosity and particle size of the vesicles remained in 30~80 cP and the nanosize range for 6 months, respectively. From the permeation experiments, niosome showed a higher amount of bakuchiol permeated through the mouse skin compared to liposome and transfersome after 24 h. From these results, niosome and transfersome could be a good bioavailability enhancement system (BAES) for P. corylifolia extract to improve the skin permeation and stability.

Stability of Various Liposome Formulation Containing the Phytochemical-Peptide Derivatives (파이토케미컬 펩타이드 유도체를 포함하는 다양한 리포좀 제형의 안정성)

  • Han, Byung Seok;Kim, Su Young;Lee, Kyung Rok;Seo, Hyo Hyun;Moh, Sang Hyun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.2
    • /
    • pp.135-143
    • /
    • 2016
  • In this study, we investigated the stability of the liposome formulation containing the phytochemicals-peptide derivatives. Among liposomes prepared using lecithins or surfactant under various conditions, the most stable niosome was obtained by using sodium palmitoyl sarcosinate and macadamia intergrifolia seed oil. The stability of peptide-containing niosome (N9) was confirmed by the TEM images. The N9 was stable at 0 and 45 degrees by Turbiscan, and its particle size was 95.7 nm. The N9 showed zeta potential value of -78.19 mV, and peptide-inclusion rate of 65.2% by BCA assay.

Antileishmanial Activity of Niosomal Combination Forms of Tioxolone along with Benzoxonium Chloride against Leishmania tropica

  • Parizi, Maryam Hakimi;Farajzadeh, Saeedeh;Sharifi, Iraj;Pardakhty, Abbas;Parizi, Mohammad Hossein Daie;Sharifi, Hamid;Salarkia, Ehsan;Hassanzadeh, Saeid
    • Parasites, Hosts and Diseases
    • /
    • v.57 no.4
    • /
    • pp.359-368
    • /
    • 2019
  • In this study, we carried out extensive in vitro studies on various concentrations of tioxolone along with benzoxonium chloride and their niosomal forms against Leishmania tropica. Niosomes were prepared by the hydration method and were evaluated for morphology, size, release study, and encapsulation efficiency. This study measured leishmanicidal activity against promastigote and amastigote, apoptosis and gene expression levels of free solution and niosomal-encapsulated tioxolone along with benzoxonium chloride. Span/Tween 60 niosome had good physical stability and high encapsulation efficiency (more than 97%). The release profile of the entrapped compound showed that a gradual release rate. The combination of niosomal forms on promastigote and amastigote were more effective than glucantime. Also, the niosomal form of this compound was significantly less toxic than glucantime ($P{\leq}0.05$). The flowcytometric analysis on niosomal form of drugs showed that higher number of early apoptotic event as the principal mode of action (89.13% in $200{\mu}g/ml$). Also, the niosomal compound increased the expression level of IL-12 and metacaspase genes and decreased the expression level of the IL-10 gene, which further confirming the immunomodulatory role as the mechanism of action. We observed the synergistic effects of these 2 drugs that induced the apoptotic pathways and also up regulation of an immunomodulatory role against as the main mode of action. Also, niosomal form of this combination was safe and demonstrated strong anti-leishmaniasis effects highlights further therapeutic approaches against anthroponotic cutaneous leishmaniasis in future planning.