• Title/Summary/Keyword: Night time vehicle detection

Search Result 24, Processing Time 0.023 seconds

Lane Detection System Based on Vision Sensors Using a Robust Filter for Inner Edge Detection (차선 인접 에지 검출에 강인한 필터를 이용한 비전 센서 기반 차선 검출 시스템)

  • Shin, Juseok;Jung, Jehan;Kim, Minkyu
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.164-170
    • /
    • 2019
  • In this paper, a lane detection and tracking algorithm based on vision sensors and employing a robust filter for inner edge detection is proposed for developing a lane departure warning system (LDWS). The lateral offset value was precisely calculated by applying the proposed filter for inner edge detection in the region of interest. The proposed algorithm was subsequently compared with an existing algorithm having lateral offset-based warning alarm occurrence time, and an average error of approximately 15ms was observed. Tests were also conducted to verify whether a warning alarm is generated when a driver departs from a lane, and an average accuracy of approximately 94% was observed. Additionally, the proposed LDWS was implemented as an embedded system, mounted on a test vehicle, and was made to travel for approximately 100km for obtaining experimental results. Obtained results indicate that the average lane detection rates at day time and night time are approximately 97% and 96%, respectively. Furthermore, the processing time of the embedded system is found to be approximately 12fps.

A Vehicle Recognition Method based on Radar and Camera Fusion in an Autonomous Driving Environment

  • Park, Mun-Yong;Lee, Suk-Ki;Shin, Dong-Jin
    • International journal of advanced smart convergence
    • /
    • v.10 no.4
    • /
    • pp.263-272
    • /
    • 2021
  • At a time when securing driving safety is the most important in the development and commercialization of autonomous vehicles, AI and big data-based algorithms are being studied to enhance and optimize the recognition and detection performance of various static and dynamic vehicles. However, there are many research cases to recognize it as the same vehicle by utilizing the unique advantages of radar and cameras, but they do not use deep learning image processing technology or detect only short distances as the same target due to radar performance problems. Radars can recognize vehicles without errors in situations such as night and fog, but it is not accurate even if the type of object is determined through RCS values, so accurate classification of the object through images such as cameras is required. Therefore, we propose a fusion-based vehicle recognition method that configures data sets that can be collected by radar device and camera device, calculates errors in the data sets, and recognizes them as the same target.

Vehicle Shadow Detection in Thermal Videos (열 영상에서의 차량 그림자 제거 기법)

  • Kim, Ji-Man;Choi, Eun-Ji;Lim, Jeong-Eun;Noh, Seung-In;Kim, Dai-Jin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.369-371
    • /
    • 2012
  • Shadow detection and elimination is a critical issue in vision-based system to improve the detection performance of moving objects. However, traditional algorithms are useless at night time because they used the chromaticity and brightness information from the color image sequence. To obtain the high detection performance, we can use the thermal camera and there are shadows by the heat not the light. We proposed a novel algorithm to detect and eliminate the shadows using the thermal intensity and the locality property. By combining two results of the intensity-based and locality-based, we can detect the shadows by the heat and improve the detection performance of moving object.

Implementation and Evaluation of Multiple Target Algorithm for Automotive Radar Sensor (차량용 레이더 센서를 위한 다중 타겟 알고리즘의 구현과 평가)

  • Ryu, In-hwan;Won, In-Su;Kwon, Jang-Woo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.2
    • /
    • pp.105-115
    • /
    • 2017
  • Conventional traffic detection sensors such as loop detectors and image sensors are expensive to install and maintain and require different detection algorithms depending on the night and day and have a disadvantage that the detection rate varies widely depending on the weather. On the other hand, the millimeter-wave radar is not affected by bad weather and can obtain constant detection performance regardless of day or night. In addition, there is no need for blocking trafficl for installation and maintenance, and multiple vehicles can be detected at the same time. In this study, a multi-target detection algorithm for a radar sensor with this advantage was devised / implemented by applying a conventional single target detection algorithm. We performed the evaluation and the meaningful results were obtained.

Development of Video-Detection Integration Algorithm on Vehicle Tracking (트래킹 기반 영상검지 통합 알고리즘 개발)

  • Oh, Jutaek;Min, Junyoung;Hu, Byungdo;Hwang, Bohee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5D
    • /
    • pp.635-644
    • /
    • 2009
  • Image processing technique in the outdoor environment is very sensitive, and it tends to lose a lot of accuracy when it rapidly changes by outdoor environment. Therefore, in order to calculate accurate traffic information using the traffic monitoring system, we must resolve removing shadow in transition time, Distortion by the vehicle headlights at night, noise of rain, snow, and fog, and occlusion. In the research, we developed a system to calibrate the amount of traffic, speed, and time occupancy by using image processing technique in a variety of outdoor environments change. This system were tested under outdoor environments at the Gonjiam test site, which is managed by Korea Institute of Construction Technology (www.kict.re.kr) for testing performance. We evaluated the performance of traffic information, volume counts, speed, and occupancy time, with 4 lanes (2 lanes are upstream and the rests are downstream) from the 16th to 18th December, 2008. The evaluation method performed as based on the standard data is a radar detection compared to calculated data using image processing technique. The System evaluation results showed that the amount of traffic, speed, and time occupancy in period (day, night, sunrise, sunset) are approximately 92-97% accuracy when these data compared to the standard data.

A Study on Drowsy Driving Detection using SURF (SURF를 이용한 졸음운전 검출에 관한 연구)

  • Choi, Na-Ri;Choi, Ki-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.4
    • /
    • pp.131-143
    • /
    • 2012
  • In this paper, we propose a drowsy driver detection system with a novel eye state detection method that is adaptive to various vehicle environment such as glasses, light and so forth using SURF(Speed Up Robust Feature) which can extract quickly local features from images. Also the performance of eye state detection is improved as individual three eye-state templates of each driver can be made using Bayesian inference. The experimental results under various environment with average 98.1% and 96.1% detection rate in the daytime and at night respectively and those in the opened ZJU database with average 97.8% detection rate show that the proposed method outperforms the current state-of-the-art.

An Illumination-Robust Driver Monitoring System Based on Eyelid Movement Measurement (조명에 강인한 눈꺼풀 움직임 측정기반 운전자 감시 시스템)

  • Park, Il-Kwon;Kim, Kwang-Soo;Park, Sangcheol;Byun, Hye-Ran
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.3
    • /
    • pp.255-265
    • /
    • 2007
  • In this paper, we propose a new illumination-robust drowsy driver monitoring system with single CCD(Charge Coupled Device) camera for intelligent vehicle in the day and night. For this system that is monitoring driver's eyes during a driving, the eye detection and the measure of eyelid movement are the important preprocesses. Therefore, we propose efficient illumination compensation algorithm to improve the performance of eye detection and also eyelid movement measuring method for efficient drowsy detection in various illumination. For real-time application, Cascaded SVM (Cascaded Support Vector Machine) is applied as an efficient eye verification method in this system. Furthermore, in order to estimate the performance of the proposed algorithm, we collect video data about drivers under various illuminations in the day and night. Finally, we acquired average eye detection rate of over 98% about these own data, and PERCLOS(The percentage of eye-closed time during a period) are represented as drowsy detection results of the proposed system for the collected video data.

Development of A Multi-sensor Fusion-based Traffic Information Acquisition System with Robust to Environmental Changes using Mono Camera, Radar and Infrared Range Finder (환경변화에 강인한 단안카메라 레이더 적외선거리계 센서 융합 기반 교통정보 수집 시스템 개발)

  • Byun, Ki-hoon;Kim, Se-jin;Kwon, Jang-woo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.2
    • /
    • pp.36-54
    • /
    • 2017
  • The purpose of this paper is to develop a multi-sensor fusion-based traffic information acquisition system with robust to environmental changes. it combines the characteristics of each sensor and is more robust to the environmental changes than the video detector. Moreover, it is not affected by the time of day and night, and has less maintenance cost than the inductive-loop traffic detector. This is accomplished by synthesizing object tracking informations based on a radar, vehicle classification informations based on a video detector and reliable object detections of a infrared range finder. To prove the effectiveness of the proposed system, I conducted experiments for 6 hours over 5 days of the daytime and early evening on the pedestrian - accessible road. According to the experimental results, it has 88.7% classification accuracy and 95.5% vehicle detection rate. If the parameters of this system is optimized to adapt to the experimental environment changes, it is expected that it will contribute to the advancement of ITS.

Night Time Vehicle Detection using Rear-Lamp Intensity (후방 램프 밝기 정보를 이용한 야간 차량 검출)

  • Jeong, Kyeong Min;Song, Byung Cheol
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.06a
    • /
    • pp.191-193
    • /
    • 2016
  • 후방 램프를 이용하는 기존의 차량 검출 기법들은 주로 색상 정보를 활용한다. 그러나 조도가 낮은 야간 환경의 특성상 색상 정보를 온전히 활용할 수 없는 경우가 빈번하게 발생한다. 이를 해결하기 위해 본 논문에서는 야간 환경에서 후방 램프의 밝기 값만을 이용해 차량을 검출한다. 일반적으로 후방 램프를 검출하기 위해 색상 정보와 밝기 값을 이용해 이진화를 하게 되는데, 본 논문에서는 밝기 값을 이용해 톤 매핑 과정을 수행하여 후방 램프의 모양을 보존한다. 밝기 값 만을 이용하기 때문에 오검출이 증가하게 되는데 이는 후방 램프에 대한 조건을 알고리즘에 적용함으로써 해결한다. 이에 더해 추적 알고리즘을 적용하여 남아있는 오검출을 제거한다. 이러한 과정은 모두 실시간으로 이루어지기 때문에 최근 활발히 연구되고 있는 자동 주행 시스템이나 주행 보조 시스템 등에 활용 될 수 있다.

  • PDF

A Study on the Influencing Factors for Incident Duration Time by Expressway Accident (고속도로 교통사고 시 돌발상황 지속시간 영향 요인 분석)

  • Lee, Ki-Young;Seo, Im-Ki;Park, Min-Soo;Chang, Myung-Soon
    • International Journal of Highway Engineering
    • /
    • v.14 no.1
    • /
    • pp.85-94
    • /
    • 2012
  • The term "incident duration time" is defined as the time from the occurrence of incident to the completion of the handling process. Reductions in incident durations minimize damages by traffic accidents. This study aims to develop models to identify factors that influence incident duration by investigating traffic accidents on highways. For this purpose, four models were established including an integrated model (Model 1) incorporating all accident data and detailed models (Model 2, 3 and 4) analyzing accidents by location such as basic section, bridges and tunnels. The result suggested that the location of incident influences incident duration and the time of arrival of accident treatment vehicles is the most sensitive factor. Also, significant implications were identified with regard to vehicle to vehicle accidents and accidents by trucks, in night or in weekends. It is expected that the result of this study can be used as important information to develop future policies to manage traffic accidents.