• Title/Summary/Keyword: Nickel-Palladium Alloy

Search Result 22, Processing Time 0.024 seconds

Hydrogen Permeation Performance of Ni48Nb32Zr20 Alloy Membrane Coated with Pd by Sputtering (스퍼터링으로 Pd가 코팅된 Ni48Nb32Zr20 합금분리막의 수소 투과 성능)

  • Min Chang Shin;Jung Hoon Park
    • Membrane Journal
    • /
    • v.34 no.2
    • /
    • pp.140-145
    • /
    • 2024
  • In modern times, when a change in the energy paradigm is required, hydrogen is an attractive energy source. Among these hydrogen purification technologies, technology using a membrane is attracted attention as a technology that can purify high purity hydrogen at low cost. However, palladium(Pd), which is mostly used because of its excellent hydrogen separation performance, is very expensive, so a replacement material is needed. In this study, a alloy membrane was manufactured from an alloy of niobium (Nb), which has high hydrogen permeability but is weak to hydrogen embrittlement, and nickel (Ni) and zirconium (Zr), which have low hydrogen permeability but are highly durable. Hydrogen permeation characteristics were confirmed under conditions of 350~450 ℃ at 1 to 4 bar. The maximum hydrogen permeation flux was 0.69 ml/cm2/min for the Ni48Nb32Zr20 alloy membrane without Pd coating, and 13.05 ml/cm2/min for the Pd coated alloy membrane.

Characteristic of Pd-Cu-Ni Alloy Hydrogen Membrane using the Cu Reflow (Cu Reflow를 이용한 Pd-Cu-Ni 합금 수소분리막 특성)

  • Kim, Dong-Won;Kim, Heung-Gu;Um, Ki-Youn;Kim, Sang-Ho;Lee, In-Seon;Park, Jong-Su;Ryi, Shin-Kun
    • Korean Chemical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.160-165
    • /
    • 2006
  • A Pd-Cu-Ni alloyed hydrogen membrane has fabricated on porous nickel support formed by nickel powder. Porous nickel support made by sintering shows a strong resistance to hydrogen embrittlement and thermal fatigue. Plasma surface modification treatment is introduced as pre-treatment process instead of conventional HCl wet activation. Nickel was electroplated to a thickness of $2{\mu}m$ in order in to fill micropores at the nickel support surface. Palladium and copper were deposited at thicknesses of $4{\mu}m$ and $0.5{\mu}m$, respectively, on the nickel coated support by DC sputtering process. Subsequently, copper reflow at $700^{\circ}C$ was performed for an hour in $H_2$ ambient. And, as a result PdCu-Ni composite membrane has a pinhole-free and extremely dense microstructure, having a good adhesion to the porous nickel support and infinite hydrogen selectivity in $H_2/N_2$ mixtures.