• 제목/요약/키워드: Nickel oxide catalyst

검색결과 38건 처리시간 0.025초

수소화 반응용 니켈 폐촉매의 재생 (Regeneration of Spent Nickel Catalyst for Hydrogenation)

  • 전종기;박영권;김주식
    • 자원리싸이클링
    • /
    • 제13권3호
    • /
    • pp.27-36
    • /
    • 2004
  • 수소화 반응용 니켈 폐촉매를 배소하여 산화니켈을 회수한 다음, 회수한 산화니켈을 산처리하고 침전법으로 Kieselguhr에 담지 된 니켈 촉매로 재생시켰다. 폐촉매의 배소 조건이 니켈산화물의 회수에 미치는 영향을 조사하였다. 니켈 폐촉매의 재생 과정에서 $1,000^{\circ}C$의 온도에서 배소 하였을 경우에 대부분 니켈산화물로 회수할 수 있었다. 산화니켈을 산처리하여 얻은 질산니켈을 사용하여 Kieselguhr에 담지 된 니켈 촉매를 제조하였다. 이때 조촉매의 첨가, 침전 조건 및 환원 조건 등이 재생된 촉매의 식물성 오일의 수소화 반응 성능에 미치는 영향을 조사하였다. 알카리 금속인 CaO와 희토류 금속인 $Ce_2$$O_3$를 조촉매로 첨가했을 때 수소화 반응의 활성이 증가하였다.

Low temperature growth of carbon nanotube by plasma enhanced chemical vapor deposition (PECVD) using nickel catalyst

  • Ryu, Kyoung-Min;Kang, Mih-Yun;Kim, Yang-Do;Hyeongtag-Jeon
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2000년도 Proceedings of 5th International Joint Symposium on Microeletronics and Packaging
    • /
    • pp.109-109
    • /
    • 2000
  • Recently, carbon nanotube has been investigating for field emission display ( (FED) applications due to its high electron emission at relatively low electric field. However, the growing of carbon nanotube generally requires relatively high temperature processing such as arc-discharge (5,000 ~ $20,000^{\circ}C$) and laser evaporation (4,000 ~ $5,000^{\circ}C$) methods. In this presentation, low temperature growing of carbon nanotube by plasma enhanced chemical vapor deposition (PECVD) using nickel catalyst which is compatible to conventional FED processing temperature will be described. Carbon n notubes with average length of 100 run and diameter of 2 ~ $3\mu$ill were successfully grown on silicon substrate with native oxide layer at $550^{\circ}C$using nickel catalyst. The morphology and microstructure of carbon nanotube was highly depended on the processing temperature and nickel layer thickness. No significant carbon nanotube growing was observed with samples deposited on silicon substrates without native oxide layer. This is believed due to the formation of nickel-silicide and this deteriorated the catalytic role of nickel. The formation of nickel-silicide was confirmed by x-ray analysis. The role of native oxide layer and processing parameter dependence on microstructure of low temperature grown carbon nanotube, characterized by SEM, TEM XRD and R없nan spectroscopy, will be presented.

  • PDF

NiO 촉매에 의한 CO 산화반응에 관한 연구 (A Study on the Catalytic Oxidation Reaction of Carbon Monoxide with Nickel Oxide)

  • 최재시;김규홍
    • 대한화학회지
    • /
    • 제13권4호
    • /
    • pp.241-247
    • /
    • 1969
  • The catalytic reaction between carbon monoxide and oxygen was investigated with the various nickel oxide catalysts at different partial pressures of carbon monoxide and oxygen and at reaction temperatures in the region of 120$^{circ}$to 250$^{circ}C$. The reaction has the highest rate with the nickel oxide catalyst which is sintered at low temperature. A reaction mechanism to explain the data is derived. From the Arrhenius equation, the activation energies in the region of experimental temperatures are found to be from 5.49 to 9.15 kcal/mole. The concentration of excess oxygen in the nickel oxide seems to vary according to the sintering temperatures and periods and is the controlling factor in determining the type of kinetics followed by the catalytic reaction.

  • PDF

Oxidation of Ethylbenzene Using Nickel Oxide Supported Metal Organic Framework Catalyst

  • Peng, Mei Mei;Jeon, Ung Jin;Ganesh, Mani;Aziz, Abidov;Vinodh, Rajangam;Palanichamy, Muthiahpillai;Jang, Hyun Tae
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권11호
    • /
    • pp.3213-3218
    • /
    • 2014
  • A metal organic framework-supported Nickel nanoparticle (Ni-MOF-5) was successfully synthesized using a simple impregnation method. The obtained solid acid catalyst was characterized by Powder X-ray diffraction (XRD), scanning electron microscopy (SEM), nitrogen adsorption-desorption and thermogravimetric analysis (TGA). The catalyst was highly crystalline with good thermodynamic stability (up to $400^{\circ}C$) and high surface area ($699m^2g^{-1}$). The catalyst was studied for the oxidation of ethyl benzene, and the results were monitored via gas chromatography (GC) and found that the Ni-MOF-5 catalyst was highly effective for ethyl benzene oxidation. The conversion of ethyl benzene and the selectivity for acetophenone were 55.3% and 90.2%, respectively.

Catalytic Reduction of ortho- and meta-Nitroaniline by Nickel Oxide Nanoparticles

  • Jeon, Sugyeong;Ko, Jeong Won;Ko, Weon Bae
    • Elastomers and Composites
    • /
    • 제55권3호
    • /
    • pp.191-198
    • /
    • 2020
  • Nickel oxide (NiO) nanoparticles were synthesized by a reaction of nickel nitrate hexahydrate (Ni(NO3)2·6H2O) and sodium hydroxide (NaOH). The synthesized NiO nanoparticles were examined with X-ray diffraction, scanning electron microscopy, Raman spectroscopy, and ultraviolet-visible (UV-vis) spectroscopy. The NiO nanoparticles were used as the catalyst for the reduction of o- and m-nitroaniline to phenylenediamine. The reduction rate of m-nitroaniline was faster than that of o-nitroaniline. The reduction rate for both o- and m-nitroaniline increased as the reaction temperature increased. The rate of reduction for nitroaniline followed a pseudo first-order reaction rate law.

니켈 촉매를 이용한 프로판 예개질 반응의 탄소침적에 대한 연구 (Carbon Deposition on Nickel Catalyst for Pre-reforming of Propane)

  • 김선영;배중면
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.487-490
    • /
    • 2008
  • Temperature programmed oxidation (TPO) is used to characterize coke species deposited on commercial nickel catalyst, C11-PR during propane pre-reforming. Propane pre-reforming performed under various condition, S/C from 1.5 to 2.5 and temperature from $350^{\circ}C$ to $450^{\circ}C$. There are three kinds of coke species detected by TPO: (i) reactive coke, (ii) coke deposited on metal site and (iii) coke deposited on acid support. Coke deposited on metal and support are minimized although reactive coke is generated at temperature of $400^{\circ}C$ and S/C of 2.0. Reactive coke is expected to remove easily below temperature of $200^{\circ}C$. Therefore, optimized pre-reforming condition for propane is $400^{\circ}C$ and S/C of 2.0.

  • PDF

Catalytic Combustion of Toluene Over NiO Supported on Mesoporous Silica Catalysts Prepared by Atomic Layer Deposition

  • Jeong, Myung-Geun;Jeong, Bora;Seo, Hyun Ook;Kim, Kwang-Dae;Park, Eun Ji;Sim, Jong Ki;Kim, Dae Han;Cho, Youn Kyuong;Yoon, Hye Soo;Lim, Dong Chan;Kim, Young Dok
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.165-165
    • /
    • 2013
  • Nickel oxide was deposited on mesoporous silica by atomic layer deposition (ALD) consisting of sequential exposures to Ni(cp)2 and $H_2O$. NiO/silica samples were characterized by inductively coupled plasma-mass spectroscopy (ICP-MS), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), etc. The flow-type reactor was used to measure activity of NiO/silica catalyst for catalytic combustion of toluene. The activity of NiO/silica catalyst was evaluated in terms of toluene removal efficiency and selectivity to $CO_2$ and compared with those of bare nickel oxide nanoparticles. In order to investigate influence of reaction temperature on combustion aspect, the catalytic combustion experiments were carried out at various temperatures. We show that both bare and supported NiO can be efficient catalysts for total oxidation of toluene at a temperature as low as $250^{\circ}C$.

  • PDF

산화철 페촉매를 애용한 NiZn-페라이트의 합성 (Synthesis of NiZn-Ferrite from Waste Iron Oxide Catalyst)

  • 황연;이효숙;이우철
    • 한국결정학회지
    • /
    • 제12권1호
    • /
    • pp.20-24
    • /
    • 2001
  • NiZn-ferrite was synthesized usign waste iron oxide catalysts which were produced from styrene monomer process and buried underground as an industrial wastes. The spinel type ferrite was obtained by calcination and sintering of the mixture of finely ground waste catalysts, nickel oxide and zinc oxide powders. The sintered body of Ni/sub 0.5/Zn/sub 0.5/Fe₂O₄ composition at 1230℃ for 5 hours showed the density of 5.38g/㎤, and initial permeability of 59 at 1 kHz. Not only cerium oxide, which existed as a major component in the catalyst, but also unicorporated NiO and ZnO into spinel structure remained as second phases after sintering.

  • PDF

NiO/La2O3-ZrO2/WO3 Catalyst Prepared by Doping ZrO2 with La2O3 and Modifying with WO3 for Acid Catalysis

  • Sohn, Jong-Rack;Choi, Hee-Dong;Shin, Dong-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권6호
    • /
    • pp.821-829
    • /
    • 2006
  • A series of catalysts, $NiO/La_2O_3-ZrO_2/WO_3$, for acid catalysis was prepared by the precipitation and impregnation methods. For the $NiO/La_2O_3-ZrO_2/WO_3$ samples, no diffraction lines of nickel oxide were observed, indicating good dispersion of nickel oxide on the catalyst surface. The catalyst was amorphous to X-ray diffraction up to 300 ${^{\circ}C}$ of calcination temperature, but the tetragonal phase of $ZrO_2$ and monoclinic phase of $WO_3$ by the calcination temperatures from 400 ${^{\circ}C}$ to 700 ${^{\circ}C}$ were observed. The role of $La_2O_3$ in the catalyst was to form a thermally stable solid solution with zirconia and consequently to give high surface area and acidity. The high acid strength and high acidity were responsible for the W=O bond nature of complex formed by the modification of $ZrO_2$ with $WO_3$. For 2-propanol dehydration the catalyst calcined at 400 ${^{\circ}C}$ exhibited the highest catalytic activity, while for cumene dealkylation the catalyst calcined at 600 ${^{\circ}C}$ showed the highest catalytic activity. 25-$NiO/5-La_2O_3-ZrO_2/15-WO_3$ exhibited maximum catalytic activities for two reactions due to the effects of $WO_3$ modifying and $La_2O_3$ doping.

산화니켈 및 탄소나노튜브/산화니켈 복합체 가스센서의 제작과 황화수소 감지 특성 (Fabrication and H2S Sensing Property of Nickel Oxide and Nickel Oxide-Carbon Nanotube Composite)

  • 양하늘;;;박지환;홍순현;윤홍관;김천중;김도진
    • 한국재료학회지
    • /
    • 제28권8호
    • /
    • pp.466-473
    • /
    • 2018
  • Nickel oxide(NiO) thin films, nanorods, and carbon nanotube(CNT)/NiO core-shell nanorod structures are fabricated by sputtering Nickel at different deposition time on alumina substrates or single wall carbon nanotube templates followed by oxidation treatments at different temperatures, 400 and $700^{\circ}C$. Structural analyses are carried out by scanning electron microscopy and x-ray diffraction. NiO thinfilm, nanorod and CNT/NiO core-shell nanorod structurals of the gas sensor structures are tested for detection of $H_2S$ gas. The NiO structures exhibit the highest response at $200^{\circ}C$ and high selectivity to $H_2S$ among other gases of NO, $NH_3$, $H_2$, CO, etc. The nanorod structures have a higher sensing performance than the thin films and carbon nanotube/NiO core-shell structures. The gold catalyst deposited on NiO nanorods further improve the sensing performance, particularly the recovery kinetics.